

Synthesis and Supramolecular Structure of 3,3'-Dibromo-1,1'-[butane-1,4-diyldioxy*bis*(nitrilomethylidyne)]dibenzene

YIN-XIA SUN*, WEI-SHENG MENG, QING-YING LAN, XIAO-YAN ZHANG, FEI-XIA MA and DA-SENG WANG

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China

*Corresponding author: E-mail: sun_yinxia@163.com

(Received: 3 April 2012;

Accepted: 21 December 2012)

AJC-12594

The compound, 3,3'-dibromo-1,1'-[butane-1,4-diyldioxy*bis*(nitrilo-methylidyne)]dibenzene with the molecular formula $C_{18}H_{18}N_2O_2Br_2$, was synthesized by the reaction of 3-bromobenzaldehyde with 1,4-*bis*(aminooxy) butane in ethanol. The molecule lies across a crystallographic inversion centre (symmetry code: -x, -y, -z) and adopts an extended form. Within the molecule, the two aromatic rings are aligned with the angle of 5.57(3)°, but extend in opposite directions from the tetramethylene bridge. In the crystal structure, weak intermolecular C-H···O hydrogen bonds and C-H··· π stacking interactions link the title molecules into an infinite 3D supramolecular network structure.

Key Words: Bisoxime compound, Synthesis, Supramolecular structure.

INTRODUCTION

Salen-type compounds are one of most prevalent mixeddonor ligands in the field of coordination chemistry¹⁻³. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and supramolecular architectures. In the past few years, salen-type compounds have been used widely as ligands in the formation of transition metal complexes^{4.5}. Many salentype complexes have been structurally characterized, but only a relatively small number of free salen-type bisoxime compounds have been characterized. As an extension of our work⁶⁻⁸, we report here the synthesis and crystal structure of a new salen-type bisoxime compound 3,3'-dibromo-1,1'-[butane-1,4diyldioxy*bis*(nitrilomethylidyne)]dibenzene.

EXPERIMENTAL

3-Bromobenzaldehyde was purchased from Alfa Aesar and used without further purification. 1,4-*Bis*(aminooxy)butane was synthesized according to an analogous method reported earlier⁶. The other reagents and solvents were analytical grade reagents from Tianjin Chemical Reagent Factory. C, H and N analyses were carried out with a GmbH VariuoEL V3.00 automatic elemental analyzer. IR spectra in the range 4000-400 cm⁻¹ were recorded on a VERTEX70 FT-IR spectrophotometer using KBr pellets. The ¹H NMR spectra were recorded on a Mercury-400BB spectrometer at room temperature using CDCl₃ as solvent. X-Ray single crystal structure was determined on a Bruker Smart APEX CCD area detector. Melting points were measured by the use of a microscopic melting point apparatus made in Beijing Taike Instrument Limited Company and the thermometer was uncorrected.

General procedure: 3,3'-Dibromo-1,1'-[butane-1,4divldioxybis(nitrilomethylidyne)]dibenzene was synthesized according to an analogous method reported earlier^{7,8}. To an ethanolic solution (2 mL) of 3-bromobenzaldehyde (407.7 mg, 2.13 mmol) was added an ethanolic solution (3 mL) of 1,4bis(aminooxy)butane (128.1 mg, 1.07 mmol). The mixture solution was stirred at 328 K for 4 h. When cooled to room temperature, the precipitate was filtered and washed successively with ethanol and ethanol-hexane (1:4), respectively. The product was dried under vacuum to yield 94.8 mg of the title compound. Yield, 19.6 %. m.p. 323.5-325.5 K. Anal. calcd. (%) for C₁₈H₁₈N₂O₂Br₂: C, 47.60; H, 3.99; N, 6.17. Found (%): C, 47.42; H, 3.83; N, 6.00. IR (KBr, v_{max}, cm⁻¹): C=N, 1625 and C-O, 1176. ¹H NMR (400 MHz, CDCl₃): 2.05 (t, *J* = 4.0 Hz, 4H, CH₂), 4.22 (t, J = 4.0 Hz, 4H, CH₂-O), 6.86 (d, J = 4.0Hz, 2H, PhH), 6.95 (s, 2H, PhH), 7.22 (s, 2H, PhH), 7.36 (d, J = 4.0 Hz, 2H, PhH), 8.03 (s, 2H, N=CH). Colourless needleshaped single crystals suitable for X-ray diffraction studies were obtained after several weeks by slow evaporation from a methanol-acetonitrile mixed solution of 3.3'-dibromo-1.1' -[butane-1,4-diyldioxybis(nitrilomethylidyne)]dibenzene.

X-Ray structure determination: The single crystal of the title compound, with approximate dimensions of 0.48 mm \times 0.38 mm \times 0.30 mm was placed on a Bruker Smart 1000 diffractmeter equipped with Apex CCD area detector. The diffraction data were collected using a graphite monochromated

MoK_{α} radition (γ =0.71073 Å) at 298(2) K. The structure was solved by using the program SHELXS-97⁹ and Fourier difference techniques and refined by full-matrix least-squares method on F² using SHELXL-97¹⁰. Details of the data collection and refinements of title compound are given in Table-1. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added theoretically. CCDC: 696136.

TABLE-1				
CRYSTAL DATA AND REFINEMENT PARAMETERS				
FOR THE TITLE COMPOUND				
Empirical formula	$C_{18}H_{18}N_2O_2Br_2$			
Formula weight	454.16			
Temperature	298(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)/c			
Cell dimensions	a = 11.9330(16) Å, b = 4.8703(5)			
	Å, c = 32.423(3) Å β = 99.706(2)			
Volume	1857.4(4) Å ³			
Z	4			
Density (calculated)	1.624 mg/m ³			
Absorption coefficient	4.377 mm ⁻¹			
F ₍₀₀₀₎	904			
Index ranges	$-14 \le h \le 11, -5 \ k \le 5, -38 \le 1 \le 34$			
Reflections collected	$8610/3256 [R_{(int)} = 0.0505]$			
Independent reflections	3256			
Data/restraints/parameters	3256/0/217			
Goodness of fit indicator	1.005			
$R[I > 2\sigma(I)]$	$R_1 = 0.0766, wR_2 = 0.1515$			
Largest diff. peak and hole	0.524 and -0.538 e. Å			

RESULTS AND DISCUSSION

X-Ray crystallographic analysis revealed the crystal structure of title compound. And the structure is shown in Fig. 1. Selected bond distances and angles are listed in Table-2. The crystal structure of the title compound is built up by only the $C_{18}H_{18}N_2O_2Br_2$ molecules and all bond lengths and angles are in normal ranges^{6,7}. The molecule assumes an extended

Fig. 1. Molecule structure of the title compound

conformation in which two benzaldoxime moieties are well separated from each other with a crystallographic inversion center (symmetry code: -x, -y, -z). Within the molecule, the two aromatic rings are aligned with the angle of 5.57(3)°, but extend in opposite directions from the tetramethylene bridge.

In the crystal structure, C-H $\cdots\pi$ (Ph) stacking interactions and weak intermolecular C-H--O hydrogen bonds link the neighboring molecules into an infinite three-dimensional supramolecular network structure. The title molecules are linked by a pair of intermolecular C9-H9... $\pi_{centroid (C13-C18)}$ hydrogen bond interactions into a 1D infinite zigzag chain along the c-axis. Furthermore, this linkage is further stabilized by a pair intermolecular C16-H16····π_{centroid (C6-C11)} hydrogen bond interactions to form an infinite 2D crapy layer parallel to the bc-plane (Fig. 2). The intermolecular C-H \cdots $\pi_{centroid}$ separations are ca. 3.214 Å for C16-H16··· $\pi_{centroid (C6-C11)}$ and ca. 3.231 Å for C9-H9… $\pi_{\text{centroid}(C13-C18)}$, respectively (Table-3) and lie in the accepted distance range for this type of contacts¹¹. In addition, the adjacent crapy layers are further linked by the intermolecular C18-H18····O2 hydrogen bonds between the oxime oxygen atom and the methylene groups of the benzene ring. It is noteworthy that an infinite helices chain along the *b*-axis is formed by the C18-H18-O2 hydrogen bond interactions (Figs. 3 and 4). To sum up, with the help of intermolecular C-H···O and C-H··· π hydrogen-bonding interactions, the crystal packing shows a self-assembling 3D supramolecular network structure.

TABLE-2							
SELECTED BOND LENGTHS (Å) AND ANGLES (°) FOR THE TITLE COMPOUND							
Bond	Lengths	Bond	Lengths	Bond	Lengths		
Br(1)-C(8)	1.901(8)	C(9)-C(10)	1.368(12)	O(2)-C(4)	1.419(8)		
N(1)-C(5)	1.253(9)	C(12)-C(13)	1.480(10)	C(2)-C(3)	1.524(10)		
N(2)-C(12)	1.265(9)	C(13)-C(18)	1.413(9)	C(5)-C(6)	93(11)		
O(1)-C(1)	1.438(8)	C(15)-C(16)	1.387(11)	C(6)-C(11)	1.411(11)		
C(1)-C(2)	1.520(10)	C(17)-C(18)	1.383(10)	C(8)-C(9)	1.380(11)		
C(3)-C(4)	1.510(9)	Br(2)-C(15)	1.861(7)	C(10)-C(11)	1.342(11)		
C(6)-C(7)	1.376(10)	N(1)-O(1)	1.419(7)	C(13)-C(14)	1.372(9)		
C(7)-C(8)	1.387(10)	N(2)-O(2)	1.422(8)	C(14)-C(15)	1.386(10)		
C(16)-C(17)	1.376(11)	-	-	-	-		
C(5)-N(1)-O(1)	108.6(7)	C(14)-C(13)-C(18)	119.8(7)	C(11)-C(6)-C(5)	118.2(8)		
N(1)-O(1)-C(1)	109.7(6)	C(18)-C(13)-C(12)	118.0(7)	C(9)-C(8)-C(7)	121.0(8)		
O(1)-C(1)-C(2)	106.6(6)	C(14)-C(15)-C(16)	118.9(8)	C(7)-C(8)-Br(1)	119.4(6)		
C(4)-C(3)-C(2)	110.7(6)	C(16)-C(15)-Br(2)	121.8(6)	C(11)-C(10)-C(9)	123.5(9)		
N(1)-C(5)-C(6)	122.2(8)	C(16) -C(17)-C(18)	119.0(8)	N(2)-C(12)-C(13)	120.1(7)		
C(7)-C(6)-C(5)	121.0(7)	C(12)-N(2)-O(2)	111.1(6)	C(14)-C(13)-C(12)	122.2(7)		
C(6)-C(7)-C(8)	118.7(8)	C(4)-O(2)-N(2)	108.3(5)	C(13)-C(14)-C(15)	120.5(7)		
C(9)-C(8)-Br(1)	119.6(6)	C(1)-C(2)-C(3)	112.3(7)	C(14)-C(15)-Br(2)	119.3(6)		
C(10)-C(9)-C(8)	118.0(8)	O(2)-C(4)-C(3)	108.4(6)	C(17)-C(16)-C(15	121.9(8)		
C(10)-(11)-C(6)	117.7(9)	C(7)-C(6)-C(11)	120.8(7)	C(17)-C(18)-C(13)	119.9(7)		

Fig. 2. View of the 1D supramolecular zigzag chain and 2D crapy layers within the title compound (hydrogen atoms, except those forming hydrogen bonds, are omitted for clarity)

Fig. 3. Intermolecular C18-H18-O2 hydrogen bonds. For clarity, the H atoms not involved in the interactions have been omitted

Fig. 4. Helix chain linked by C18-H18...O2 hydrogen bonds. For clarity, the non-contact atoms not involved in the interactions have been omitted

TABLE-3							
HYDROGEN-BONDING DATA [Å, °]							
D-H···A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	∠D-H…A			
C18-H18O2	0.93	2.51	3.417(3)	161			
C16-H16…Cg1 ^a	0.93	3.21	4.012(4)	146			
C9-H9···Cg2 ^b	0.93	3.23	4.008(4)	143			
^a Cg1 is the C6–C11 ring centroids. ^b Cg2 is the C13–C18 ring							

centroid.

ACKNOWLEDGEMENTS

The authors thank Young Scholars Science Foundation of Lanzhou Jiaotong University (2011007) for financial support of this work.

REFERENCES

- B. Sieklucka, R. Podgajny, P. Przychodzen and T. Korzeniak, *Coord. Chem. Rev.*, 249, 2203 (2005).
- 2. J.D. Dyers, S.Y. Que, D. VanDerveer and X.R. Bu, *Inorg. Chim. Acta*, **359**, 197 (2006).
- R. Klement, F. Stock, H. Elias, H. Paulus, P. Pelikan, P. Valko and M. Mazur, *Polyhedron*, 18, 3617 (1999).
- 4. S. Akine, W.K. Dong and T. Nabeshima, *Inorg. Chem.*, **45**, 4677 (2006).
- W.K. Dong, J.H. Feng and X.Q. Yang. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 37, 189 (2007).
- W.K. Dong, J.H. Feng, L. Wang, L. Xu, L. Zhao and X.Q. Yang, *Transition Met. Chem.*, **32**, 1101 (2007).
- 7. W.K. Dong, J.G. Duan and G.L. Liu, *Transition Met. Chem.*, **32**, 702 (2007).
- W.K. Dong, J.Y. Shi, J.K. Zhong, Y.Q. Tian and J.G. Duan, *Chin. J. Inorg. Chem.*, 24, 10 (2008).
- 9. G.M. Sheldrick, SHELXS97, Program for Crystal Structure Determination, University of Göttingen, Germany (1996).
- 10. G.M. Sheldrick, Acta Cryst., A64, 112 (2008).
- 11. J. Lewin Ski, J. Zachara, I. Justyniak and M. Dranka, *Coord. Chem. Rev.*, **249**, 1185 (2005).