
INTRODUCTION

Voltage-gated calcium channels are transmembrane

proteins, which upon membrane depolarization, allow selective

Ca2+ permeation in excitable cells. Voltage-gated calcium

channels are heteromeric proteins consisting of the pore forming

a1 subunit, disulfide-linked transmembrane complex of a2 and

d subunits, intracellular b subunit and an a subunit characteristic

for skeletal muscle Ca2+ channels1. Variability of regularity

subunits distinguishes the tissue-specific calcium channel

types2 L, N, T, P, Q and R. L-type Ca2+ channels are sensitive

to numerous agonist and antagonist drugs that modulate the

Ca2+ flow. Dihydropyridines include both blocker and activators

of LCCs3. As their introduction of calcium channel blockers

by Fleckenstein4, these compounds have found to have special

significance in the therapy of hypertension, angina pectoris

and cardiovascular disease5. Among the classes of calcium

channel blockers, dihydropyridines derivatives are widely used.

A quantitative structure-activity relationship  study indicated

that the potency of nifedipine analogs was dependent upon

lipophilicity and electronic term and separate terms for each

position on the aromatic ring. Change in the substitution pattern

at the C-3, C-4, C-5 positions of nifedipine alter potency6,

Quantum Chemistry Based Quantitative Structure-Activity Relationship Prediction Setting

for Toxicity of 4-Imidazolyl-1,4-Dihydropyridines as Calcium Channel Blockers

SAADAT VAHDANI
1, MOHSEN SAREM

2 and FARZIN HADIZADEH
3,*

1Department of Chemistry, Islamic Azad University-North Tehran Branch, Tehran, Iran
2Department of Chemistry, Payame Nour University, Mashhad, Iran
3Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

*Corresponding author: Fax: +98 511 8823251; Tel: +98 511 7112420; E-mail: hadizadehf@mums.ac.ir

(Received: 17 February 2012; Accepted: 19 November 2012) AJC-12424

The usefulness of the quantum chemical descriptors, calculated at the level of the DFT theory using 6-31 + G (d,p) basis set for quantitative

structure-activity relationship study of 4-imidazolyl-1,4-dihydropyridines as calcium channel blockers was examined. A dataset set of

thirty six 1,4-dihydropyridines constitute a group of small organic compounds. Several types of descriptors, including electrotopological,

structural, thermodynamics and quantum chemical, were used to derive a quantitative relationship between L-type calcium channel

blocking activity and structural properties. Multiple linear regressions (MLR) were employed to model the relationships between molecular

descriptors and biological activity of molecules using stepwise method and genetic algorithm as variable selection tools. A multi-parametric

equation containing maximum five descriptors at AM1 method with good statistical qualities (R2
train = 0.860, Ftrain = 28.265, Q2

LOO = 0.802,

R2
adj = 0.829, Q2

LGO = 0.792, Q2
BOOT = 0.796) was obtained by multiple linear regression using stepwise method. The accuracy of the

proposed MLR model was illustrated using the following evaluation techniques: cross-validation and Y-randomization.

Key Words: Quantitative structure-activity relationship, Dihydropyridines, Multiple linear regression, Genetic algorithm, pIC50.

Asian Journal of Chemistry;   Vol. 25, No. 5 (2013), 2663-2667

tissue selectivity7,8 and conformation of the 1,4-dihydro-

pyridine ring9. Our previous studies suggested that heterocyclic

substituent like 1-substituted- alkylthioimidazol-5-yl as

bioisosteric replacement of nitrophenyl group at C-4 gave

active compounds with potent calcium antagonist activity10-13.

Quantitative structure-activity relationship analysis is an

effective method in research into rational drug design and the

mechanism of drug actions. In addition, it is useful in areas

like the design of virtual compound libraries and the compu-

tational-chemical optimization of compounds. Quantitative

structure-activity relationship studies can express the biological

activities of compounds as a function of their various structural

parameters and also describes how the variation in biological

activity depends on changes in the chemical structure14. Quanti-

tative structure-activity relationship models, mathematical

equations relating chemical structure to their biological activity,

give information that is useful for drug design and medicinal

chemistry15-17. A successful quantitative structure-activity relation-

ship model is not only constructed to correctly estimate the

numerical value of the property or biological activity, but also

to give a deeper understanding of what structural features are

important for the observed activity. A major step in constructing

the quantitative structure-activity relationship models is finding
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one or more molecular descriptors that represent variation in

the structural property of the molecules by a number. Nowa-

days, a wide variety of descriptors have been used in quantitative

structure-activity relationship analysis18-20. Recent progress in

computational hardware and the development of efficient

algorithms have assisted the routine development of molecular

quantum chemical calculations. Quantum chemical descriptors

offer an attractive alternative to traditional quantitative structure-

activity relationship molecular descriptors by expressing a

more accurate and detailed description of the electronic and

geometric molecular properties and the interaction between

them21. Recently, Karelson et al.22 reported a comprehensive

review on these types of descriptors. Thanikaivelan et al.23

defined some new quantum chemical descriptors, including

hardness, softness, electronegativity and electrophilicity and

used them for a quantitative structure-activity relationship study

of alkanes. In a quantitative structure-activity relationship study

the model must be validated for its predictive value before it

can be used to predict the response of additional chemicals.

Validating quantitative structure-activity relationship with

external data (i.e. data not used in the model development),

although demanding, is the best method for validation. Finally,

the accuracy of the proposed model was illustrated using the

following: leave one out, cross-validations and Y-randomization

techniques.

TABLE-1 
CHEMICAL STRUCTURES AND THE CORRESPONDING OBSERVED AND PREDICTED PIC50 VALUES BY THE MLR METHOD 

N

N

N

R3

R4

COOR1R2OOC

H3C CH3

H  

No. R1 R2 R3 R4 pIC50 exp. Pred. Ref. 

1 CH3 CH3 CH3 SO2CH3 0.86027 0.625669 9 

2 C2H5 C2H5 CH3 SO2CH3 0.789347 0.999082 9 

3 n-Pr n-Pr CH3 SO2CH3 0.574877 0.84819 9 

4 n-Bu n-Bu CH3 SO2CH3 0.667086 0.792223 9 

5 n-pentyl n-pentyl CH3 SO2CH3 0.875205 0.7196 9 

6 Isobutyl isobutyl CH3 SO2CH3 0.723134 0.850389 9 

7 t-butyl t-butyl CH3 SO2CH3 0.85661 0.668108 9 

8 CH3 CH3 4-FC6H4CH2 SCH3 1.095585 0.858158 11 

9 CH3 CH3 C6H5CH2 SCH3 0.461588 0.911245 10 

10 C2H5 C2H5 4-FC6H4CH2 SCH3 1.020177 0.677142 11 

11 CH3 CH3 C6H5CH2 SC2H5 0.518944 0.574097 10 

12 CH3 CH3 4-FC6H4CH2 SC2H5 1.046083 0.80603 11 

13 C2H5 C2H5 C6H5CH2 SC2H5 0.41345 0.860786 10 

14 C2H5 C2H5 C6H5CH2 SCH3 1.00993 0.609399 10 

15 CH3 CH3 2-ClC6H4CH2 SCH3 1.01749 0.666391 11 

16 C2H5 C2H5 2-ClC6H4CH2 SCH3 1.012685 0.618935 11 

17 CH3 CH3 2-ClC6H4CH2 SC2H5 1.00088 0.600928 11 

18 C2H5 C2H5 2-ClC6H4CH2 SC2H5 0.858992 0.5666 11 

19 CH3 C2H5 CH3 SO2CH3 0.600871 0.484545 9 

20 CH3 n-pr CH3 SO2CH3 0.537459 0.576469 9 

21 C2H5 n-pr CH3 SO2CH3 0.550631 1.054337 9 

22 CH3 i-Pr CH3 SO2CH3 0.567289 0.859426 9 

23 CH3 n-Bu CH3 SO2CH3 0.590333 0.836931 9 

24 C2H5 n-Bu CH3 SO2CH3 0.619669 0.660014 9 

25 CH3 tert-Bu CH3 SO2CH3 0.55005 0.673428 9 

26 C2H5 tert-Bu CH3 SO2CH3 0.570664 0.678077 9 

27 CH3 iso-bu CH3 SO2CH3 0.643257 0.520971 9 

28 C2H5 iso-bu CH3 SO2CH3 0.722763 0.677142 9 

29 CH3 CH2C6H5 CH3 SO2CH3 0.905541 0.858158 9 

30 C2H5 CH2C6H5 CH3 SO2CH3 0.72203 0.856488 9 

31 CH3 CH2CH2C6H5 CH3 SO2CH3 1.017519 0.520971 9 

32 C2H5 CH2CH2C6H5 CH3 SO2CH3 0.799125 0.997021 9 

33 CH3 Cyclohexyl CH3 SO2CH3 0.611643 1.077719 9 

34 C2H5 Cyclohexyl CH3 SO2CH3 0.587993 0.879013 9 

35 CH3 CyclohexylCH2 CH3 SO2CH3 0.661675 0.663886 9 

36 C2H5 CyclohexylCH2 CH3 SO2CH3 0.676576 0.815375 9 
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EXPERIMENTAL

Data set: In this study, the data set of 1, 4-dihydro-

pyridines constitute a group of small organic compounds are

based on a core pyridine structure, which can both block and

enhance calcium currents9-11. The inhibitory activity values are

expressed as the half maximal inhibitory concentration (IC50).

The chemical structures and activity data for the complete set

of compounds are presented in Table-1. The activity data [IC50

(µM)] was converted to the logarithmic scale pIC50 [-log IC50

(M)] and then used for the subsequent quantitative structure-

activity relationship analyses as the response variables. The

data set was randomly divided into two subsets: the training

set containing 29 compounds (80 %) and the test set containing

7 compounds (20 %). The training set was used to build a

regression model and the test set was used to evaluate the

predictive ability of the model obtained.

Quantum chemical calculations: The molecular

structures of all the 1,4-dihydropyridines derivatives were built

with Hyperchem (Version 7, Hyper Cube Inc.). Gasphase full

geometry optimization for the investigated molecules was

carried out with the Gaussian 98 series of programs24. The

structures were optimized with DFT method at the hybrid

functional B3LYP (BeckeKs three-parameter25 functional

employing the Lee, Yang and Parr correlation functional26 and

the medium-size basis set 6-31 + G (d, p) level. No molecular

symmetry constraint was applied; rather full optimization of

all bond lengths and angles was carried out. Local charge (LC)

calculated according to Mulliken population analysis (MPA)27,

natural population analysis (NPA)28 and electrostatic potential

(EP)29 at each atom, highest occupied molecular orbital

(HOMO) and lowest unoccupied molecular orbital (LUMO)

energies, difference between LUMO and HOMO orbital

energies, molecular dipole moment (MDP), molecular polari-

zability (MP), molecular quadrupole moment (MQM) and

molecular volume were calculated by Gaussian 98. The

molecular modeling system Hyperchem software was further

employed to calculate the following parameters from the

energy minimized structures: molecular surface area (MSA),

molar refractivity (MR) and hydration energy (HE). Quantum

chemical indices of hardness (h), softness (S), electronegativity

(c) and electrophilicity (w) were calculated according to the

method proposed by Thanikaivelan et al. n-Octanol-water

partition coefficient (log P) values were obtained with ACD/

labs computer program30. A brief description of the descriptors

used in study is represented in Table-2.

RESULTS AND DISCUSSION

Data processing and modeling: The MLR analysis was

employed to derive the quantitative structure-activity relation-

ship models for different 1,4-dihydropyridines derivatives.

MLR and correlation analyses were carried out by the statistics

software SPSS 13.0 version. Before any MLR analysis, the

correlation between the selected descriptors was examined

(Table-3) and collinear descriptors (r > 0.90) were determined.

Among these descriptors one of them, which had higher corre-

lation with the dependent variable, was retained and the others

were removed from the descriptor data matrix. The remaining

descriptors were used to construct the MLR model, in accor-

dance with the stepwise and GA selection methods.

TABLE-2 
CALCULATED DESCRIPTORS USED IN THIS STUDY 

Descriptors Symbol Abbreviation 

Molecular dipole moment MDP 
Molecular polarizability MP 
Natural population analysis NPA 

Electrostatic potential EP 

Highest occupied molecular orbital HOMO 

Quantum 
chemical 

descriptors 

Lowest unoccupied molecular orbital LUMO 

Partition Coefficient Log P 

Mass M 
Chemical 
properties 

Molecule volume V 

Difference between LUMO and HOMO EGAP 

Hardness [η =1/2 (HOMO+LUMO)] H 

Softness (S = 1/η) S 

Electro negativity [χ = -1/2 (HOMO-

LUMO)] 

X 

El electro philicity (ω =χ2/2η) Ω 

Quantum 
chemical 

descriptors 

 

Mullikenl charge MC 

Molecule surface area SA 

Hydration energy HE 
Chemical 
properties 

Refractivity REF 

 

TABLE-3 
CORRELATION COEFFICIENT EXISTING BETWEEN  

THE VARIABLES USED IN DIFFERENT MLR  
AND GA-MLR EQUATIONS 

 MC4 MC17 NPA12 EP4 
Exact 

polaribi-
zibility 

MC4 1 0 0 0 0 

MC17 -0.39316 1 0 0 0 

NPA12 0.29398 -0.03346 1 0 0 

EP4 0.180981 0.34743 0.653347 1 0 

Exact 
polaribizibility 

0.044223 -0.22517 -0.22909 -0.5967 1 

 
In a quantitative structure-activity relationship study,

generally, the quality of a model is expressed by its fitting

ability and prediction ability and of these the prediction ability

is the more important. With the selected descriptors, we have

built a linear model using the set data and the following

equation was obtained:

pIC50 = 42.9988 (± 33.56039) + 0.389185 (± 0.139432)

MC4 + 0.28915 (± 0.090227) MC17-0.9568 (± 0.408303)

NPA12 + 2.529824 (± 2.171152) EP4 + 0.003992 (± 0.001102)

exact polarizibility:

Ntrain = 29 Ntest = 7 R2
train = 0.82 R2

test = 0.74 R2
adj = 0.54 Ftrain =

7.59 Ftest = 0.57 Q2
LOO = 0.70 Q2

LGO = 0.74 Q2
BOOT = 0.60

The better regression models were selected on the basis

of the higher R, F value (a statistic of assessing the overall

significance) and the lower SEE. Cross validation procedure

[leave-one-out (Q2
LOO) and leave five-out (Q2

LFO)]31 was applied

to measure the predictive capabilities of the models by using

Matlab 6.5 program. The built model was used to predict the

test set data and the prediction results are given in Table-1. As

can be seen from Table-1, the calculated values for the pIC50

are in good agreement with those of the experimental values.

The predicted values for pIC50 for the compounds in the training

and test sets using eqn. 1 were plotted against the experimental

pIC50 values in Fig. 1. A plot of the residual for the predicted

values of pIC50 for both the training and test sets against the

Vol. 25, No. 5 (2013) QSAR Prediction Setting for Toxicity of 4-Imidazolyl-1,4-Dihydropyridines  2665



experimental pIC50 values are shown in Fig. 2. As can be seen

the model did not show any proportional and systematic

error, because the propagation of the residuals on both sides

of zero are random.
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Fig. 2. Residual versus the experimental pIC50 by GA-MLR

In order to assess the robustness of the model, the Y-

randomization test was applied in this study32,33. The dependent

variable vector (pIC50) was randomly shuffled and a new quanti-

tative structure-activity relationship model developed using

the original independent variable matrix. The new quantitative

structure-activity relationship models (after several repetitions)

would be expected to have low R2 and Q2 LOO values (Table-4). If

the opposite happens then an acceptable quantitative structure-

activity relationship model cannot be obtained for the specific

modelling method and data.

TABLE-4 
R2 train AND Q2

LOO VALUES AFTER SEVERAL  
Y-RANDOMIZATION TESTS 

Iteration R2 train Q2
LOO 

1 0.003298 0.228912 

2 0.003475 0.149282 

3 0.033076 0.256127 

4 0.187993 0.059104 

5 0.026977 0.228785 

6 0.030128 0.25766 

7 0.086354 0.316356 

8 0.047476 0.305111 

9 0.026229 0.11979 

10 0.303182 0.585411 

 

Applicability domain: The Williams plot (Fig. 3), the

plot of the standardized residuals versus the leverage, was

exploited to visualise the applicability domain34. The leverage

indicates a compound's distance from the centroid of X. The

leverage of a compound in the original variable space is defined

as35:
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Fig. 3. William plot of the GA-MLR model

Conclusion

In this study, a quantitative structure-activity relationship

study of 36 molecules showing L-type calcium channel blocking

activity was performed based on the theoretical molecular

descriptors calculated by the Gaussian 98 software. The built

model was assessed comprehensively (internal and external

validation) and all the validations indicated that the quantitative

structure-activity relationship model built was robust and satis-

factory and that the selected descriptors could account for the

structural features responsible for the 1, 4 dihydropyridiness.

The quantitative structure-activity relationship model developed

in this study can provide a useful tool to predict the activity of

new compounds and also to design new compounds with high

activity.
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