
INTRODUCTION

Surface tension is an important thermo-physical property

in the chemical process industry. Surface tension of a liquid

characterizes the free energy per unit area required for the

formation of a liquid-air interface at constant temperature,

pressure and composition. Surface tension data is used in many

engineering applications such as mass transfer operations

including distillation, liquid-liquid extraction, adsorption and

absorption. Accurate and reliable values of surface tension are

necessary for optimal design of the equipment, this leads to

better operation and ultimately reduction in costs1,2. For the

chemical engineer, surface tension determines the quality of

many of the products resulting from the different industries

such as those producing coatings, paints, detergents, cosmetics

and agrochemicals, but also affects some important steps in

the production process. Since experimental measurements of

surface tensions are often unavailable, expensive and time-

consuming, theoretical models are regularly used3. The theore-

tical prediction of the surface tension of organic compounds

is required in many chemical engineering calculations.

Surface tension is closely related to the effects of inter-

molecular interaction in bulk liquid of organic compounds. It

should be noted that London dispersion forces are responsible
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for intermolecular interaction. London force is an attractive

force that results when electrons in two adjacent atoms form

temporary dipoles; the London potential is given by:
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where, α is the atomic polarizability (α = 4πε0r
3
m, where rm is

the radius of the molecule), I is the ionization potential, r is

the distance between molecules4.

Quantitative structure property/activity (QSPR/QSAR)

study has become one of the most explored areas of research

in computational chemistry in past couple of decades. A funda-

mental goal of QSPR/QSAR studies is to predict complex

physical, biological, chemical and technological properties of

chemical compounds from simpler descriptors, preferably

those calculated solely from molecular structure. The general

idea of QSAR and QSPR is that property/activity of a new

untested molecule can be readily estimated from the molecular

structure of similar compounds whose properties/activities

have already been determined. The correlation between the

properties/activities of the molecules and their structures are

necessary to obtain reliable models. If a good correlation is

found, then it would be easy to determine the properties/

activities of various compounds, including those not yet
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synthesized5. Quantitative structural property relationship

studies are performed on the basis of the correlation between

the experimental values of the property and molecular descri-

ptors reflecting the molecular structure of the respective

compounds. The descriptors provide quantitative information

about the properties of models. Rigorous testing of the

predictive power of the equations obtained is possible. Hence

the QSPR approach is a general and reliable method to predict

various physico-chemical properties6,7. To develop a QSPR

model the following steps are involved i.e., data collection,

molecular geometry optimization, molecular descriptors gene-

ration, selecting the best descriptors, model development and

finally model performance evaluation (validation)8. One of the

important problems in QSPR is the description of molecular

structures using molecular descriptors, which can include struc-

tural information as much as possible. Theoretical descriptors

such as constitutional descriptors and topological indices have

found the major popularity in QSPR studies for several reasons

such as i) their calculation is simple and fast, ii) they do not

need information about three dimensional structure of mole-

cules, iii) They are exact number without uncertainty and iv)

they represent high correlation with many physico-chemical

properties9. Recently, various statistical methods such as

multiple linear regression, cluster analysis, Principal component

analysis and partial least square regression have been applied

to the QSPR studies. For the prediction of physical properties,

high-quality models are obtained based on predictive equations

using linear regression techniques, are used to correlate struc-

ture related descriptors with observed properties. Currently,

neural networks are used with encouraging success in develop-

ment of various QSPR models. An artificial neural network

represents non-linear methods are well suited to describe

structure-property models. Moreover, artificial neural network

is able to consider not only particular structure characteristics,

but also interrelations and interdependencies between mutually

influencing structural features. Therefore, they can be easily adapted

for processing large data set formed by a set of descriptors10,11.

Several papers are reported in the literature for prediction

of surface tension using multivariate regression. Stanton and

Jurs12 have designed a multivariate regression based 10

descriptor model for a data set of 146 structures having a R2

of 0.983. Kauffman and Jurs13 published a paper which employs

multiple linear regression as a tool for prediction of surface

tension of 159 structures. Their model involves eight descri-

ptors yielded a squared correlation coefficient of 0.83. Delgado

and Diaz14 report a six descriptor model for a data set of 320

chemicals with a R2 of 0.96 using multiple linear regression

(MLR) methods. Only few works are available in literature

for prediction of surface tension using neural network Hence,

this paper explains associative neural network based prediction

of surface tension of organic compounds based on 6 molecular

descriptors provided by E-DRAGON15 having specific physical

meaning corresponding to different molecular interactions

occurring in the bulk solution are reported.

EXPERIMENTAL

Data set: The experimental surface tension data set for

the 116 organic compounds considered in this study are

compiled from the published literature16. The heterogeneous

data set includes alkanes, alcohols, amines, alkenes and alde-

hydes. Tables 1 and 2 shows the compounds and their corres-

ponding experimental surface tension as logarithmic values at

20 ºC. The data set is randomly divided into two subsets: the

training set containing 90 compounds (78 %) and the test set

containing 26 compounds (22 %). The training set is used to

build models using associative neural network. The test set is

used evaluate the predictive ability of the models obtained.

Molecular descriptors: The chemical structures of the

116 organic compounds are drawn with MarvinSketch17 and

exported as SMILES notation. Next, organic compounds

represented by SMILES format are used as input for calculation

of various types of descriptors with the online software, E-

DRAGON15, which converts the molecules from SMILES

notation to 3-dimensional structures.

Selection of molecular descriptors: The challenge in

developing the QSPR model is the selection of molecular

descriptors from the pool of available descriptors that strongly

correlate with desired physical property. As the number of

descriptors increases, the capability of prediction analysis

methods decreases because of the redundancy of information

incorporated by the different descriptors. Techniques to mini-

mize the problem, such as principal component analysis and

Unsupervized Forward selection, have been used in QSPR

model development.

Unsupervized forward selection is a data selection proce-

dure by eliminating redundant variables, that selects from a

data matrix a maximal linearly independent set of columns

with a minimal amount of multiple correlations. Unsupervized

forward selection was designed for use in the development of

QSPR models, where the m by n data matrix contains the

values of n variables (typically molecular properties) for m

objects (typically compounds). QSPR data sets often contain

redundancy (exact linear dependencies between subsets of the

variables) and multicollinearity (high multiple correlations

between subsets of the variables). Both of these features

inhibit the development of QSPR models with the ability to

generalize successfully to new objects. Continuum regression,

an algorithm encompassing ordinary least squares regression,

regression on principal components and partial least squares

regression, is used to construct models from the selected vari-

ables. Unsupervized forward selection produces a reduced data

set that contains no redundancy and a minimal amount of

multicollinearity. The variable selection routine is shown to

produce simple, robust and easily interpreted models for the

chosen data sets. The developed algorithm of unsupervized

forward selection is available online at18.

Neural network: Artificial neural network is one of

recently emerged directions in the field of information

processing technology. It has a origin in efforts to produce a

computer model of the information processing that takes place

in the nervous system. In many applications, including the

present work, the biological relevance of neural networks of

nervous system function is unimportant. A neural network may

simply be viewed as a highly parallel computational device

and is found to be useful in a variety of tasks including solving

certain optimization problems and pattern recognition. The
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artificial neural network are trained to perform a particular

function by adjusting the values of the connections, or weights,

between elements until a particular input leads to a specific

output. The artificial neural network consists of input layer,

hidden layer and output layer. These three layers are connected

with each other. The input layer receives the input data outside

the network and sends them to the hidden layer. The hidden

layer contains interconnected neurons for the pattern recognition

and the relevant information interpretation for adjusting the

weights on the connections. Afterwards, the results from the

hidden layer are sent to the output layer for the outputs. The

neurons contain several functions and variables including

weights, non-linear transfer functions, methods to add up all

inputs and bias values. The sum of all products of all the inputs

multiplied with the weights and the bias values passes through

a non-linear transfer function as the output of each neuron19.

Associative neural network: The traditional artificial

feed forward neural network is a memory-less approach. This

means that after training is complete, all information about

the input patterns is stored in the neural network weights and

input data are no longer needed, i.e. there is no explicit storage

of any presented example in the system. Contrary to that,

associative neural network is a method with improved predic-

tive abilities including combination of memory-based and

memory-less method. It offers an elegant approach to incor-

porate "on the fly" the user's data9. The associative neural

network is an extension of the committee of machines that

goes beyond a simple/weighted average of different models.

An associative neural network represents a combination of an

ensemble of feed forward neural networks (memory-less) and

the K-nearest neighbour technique (memory-based). It uses

the correlation between ensemble responses as a measure of

distance among the analyzed cases for the nearest neighbour

techniques. An associative neural network has a memory that

can coincide with training set. If new data is available the

network improves its predictive ability and gives a good

approximation of unknown function without a need to retrain

the neural network ensemble. This method dramatically

enhances its predictive ability over traditional neural network

and K-nearest neighbour techniques20.

The associative neural network models are selected based

on selection processes that include the algorithm, the number

of neurons and hidden layers and the iterations and number of

ensembles. The early stopping over ensemble (ESE) method

was used for training the neural networks). In ESE, initial

training sets were randomly constructed with equal size

learning and validation sets for each neural network in the

ensemble. Thus, each neural network had its own learning and

validation sets. The learning set was used for adjusting neural

network weights. The training was stopped when a minimum

error for the validation set was calculated ('early stopping

point'). Following ensemble learning, a simple average of all

networks was used for predicting the test patterns. Associative

neural network is available online at the VCCLAB website21.

RESULTS AND DISCUSSION

E-DRAGON software is used to capture all possible

diverse structural information, Unsupervized forward selection

method has been used for descriptor selection or model

development in different systems. The descriptors selected for

present study must not be highly correlated. Only those

descriptors having intercorrelation co-efficient below 0.8 are

considered for the present study.

The selected descriptors involved in the present QSPR

model are: (i) Mp: Mean atomic polarizability (scaled on carbon

atom); (ii) L1v: 1st component size directional WHIM index/

weighted by atomic vander Waals volumes; (iii) C001: Atom

centered fragments/ CH3R; (iv) X2Av: Average valence

connectivity index chi-2; (v) nN: Number of nitrogen atoms;

(vi) nO: Number of oxygen atoms

Mp is a constitutional descriptor calculated by dividing

sum of atomic polarizabilities by number of atoms. nN and

nO are also constitutional descriptors. L1v is a WHIM

(weighted holistic invariant molecular) descriptor based on

the statistical indices calculated on the projections of atoms

along principal axes. They are built in such a way as to capture

relevant molecular 3D information regarding the molecular

size, shape, symmetry and atom distribution with respect to

invariant reference frames. X2Av is a topological descriptor

encodes presence of heteroatom, double and triple bonds

calculated from hydrogen suppressed graph. C-001 is a atom

centered fragment descriptor defined by counting first

neighbours of carbon atoms (CH3R), where R is the presence

of heteroatoms.

The selected descriptors listed in Table-1 are applied to

the associative neural network for training. During the training

process, the network involves six neurons (six descriptors) in

the input layer, six neurons in the hidden layer and one neuron

in the output layer [log (ST)] for 90 compounds. The network

is trained using the Leven Berg Marquardt algorithm. Number

of hidden neuron is decided by training and predicting the

'training data' by varying the number of hidden neurons in the

hidden layer. A suitable configuration has to be chosen for the

best performance of the network. Out of the different configu-

ration tested, a hidden layer with 6 hidden neurons produced

the best result for prediction of surface tension of organic

compounds. Seed number is used in to start sequence of

random numbers for neural network weights initialization and

partition of initial training set data on training/test sets. After

the training process, predictive ability of the model is estimated

from an external test set of chemicals not included in the

training set. The computed surface tension for 26 compounds

using associative neural network is given in Table-2. The

validation set included 26 compounds with diverse set of

chemical compounds. The quality of prediction is evaluated

by using two parameters: squared correlation co-efficient (R2)

and root mean square error. The architecture of the final model

is shown in Table-3. The statistical performance of the asso-

ciative neural network QSPR model for surface tension esti-

mation is summarized in Table-4. The root mean square errors

of associative neural network model for training and testing

are 0.035 log units and 0.0809 log units respectively. Figs. 1

and 2 show scatter plot of the associative neural network

predicted versus experimental values of log (ST) for the training

and test set respectively. Squared correlation co-efficient

(R2) of 0.988 for training and 0.932 for testing confirms the
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TABLE-1 
TRAINING SET WITH SELECTED DESCRIPTORS FOR SURFACE TENSION 

S. No Compound name m.p. L1v C-001 X2Av nN nO Experimental log st Predicted log (ST) Residual 

1 Propane 0.55 1.432 2 0.707 0 0 2.024193 2.12 -0.1 

2 2,2 Dimethyl butane 0.57 1.851 4 0.416 0 0 2.791778 2.85 -0.06 

3 Pentane 0.56 3.703 2 0.451 0 0 2.775709 2.8 -0.02 

4 2-Methyl Pentane 0.57 3.445 3 0.437 0 0 2.85532 2.87 -0.01 

5 3,3-Dimethyl pentane 0.57 2.779 4 0.359 0 0 2.967847 3.03 -0.06 

6 3-Ethyl 3-methyl pentane 0.57 2.483 4 0.319 0 0 3.090588 3.09 0 

7 2,2,3-Trimethyl pentane 0.57 2.866 5 0.368 0 0 3.028683 3.04 -0.01 

8 2,3,3-Trimethyl pentane 0.57 2.723 5 0.35 0 0 3.071303 3.08 -0.01 

9 Hexane 0.57 5.256 2 0.427 0 0 2.912351 2.92 -0.01 

10 2-Methyl hexane 0.57 5.023 3 0.423 0 0 2.959587 2.95 0.01 

11 3-Ethyl hexane 0.57 3.764 3 0.353 0 0 3.073619 3.06 0.01 

12 2,3 Dimethyl hexane 0.57 4.428 4 0.376 0 0 3.044522 3.04 0 

13 2,4 Dimethyl hexane 0.57 4.551 4 0.393 0 0 2.998229 3.01 -0.01 

14 2,5 Dimethyl hexane 0.57 5.088 4 0.421 0 0 2.988708 2.97 0.02 

15 3,3 Dimethyl hexane 0.57 4.18 4 0.363 0 0 3.030134 3.06 -0.03 

16 3,4-Dimethyl hexane 0.57 4.221 4 0.346 0 0 3.078233 3.09 -0.01 

17 4-Ethyl-2-methyl hexane 0.57 3.796 4 0.368 0 0 3.08191 3.04 0.04 

18 3-Ethyl-3-methyl hexane 0.57 3.792 4 0.327 0 0 3.146305 3.12 0.03 

19 2,2,3-Trimethyl hexane 0.57 4.233 5 0.369 0 0 3.085116 3.07 0.02 

20 2,2,4-Trimethyl hexane 0.57 4.337 5 0.389 0 0 3.020913 3.03 -0.01 

21 2,2,5-Trimethyl hexane 0.57 4.893 5 0.408 0 0 2.997231 3 0 

22 2,3,3-Trimethyl hexane 0.57 4.019 5 0.354 0 0 3.109061 3.1 0.01 

23 2,3,4-Trimethyl hexane 0.57 3.609 5 0.349 0 0 3.126761 3.1 0.03 

24 Heptane 0.57 7.017 2 0.412 0 0 3.002708 3 0 

25 2-Methyl heptane 0.57 6.955 3 0.413 0 0 3.032546 3.02 0.01 

26 3- Methyl heptane 0.57 6.391 3 0.379 0 0 3.059176 3.07 -0.01 

27 4-Methyl heptane 0.57 6.204 3 0.383 0 0 3.05022 3.05 0 

28 2,4-Dimethyl heptane 0.57 6.209 4 0.391 0 0 3.061052 3.06 0 

29 2,5-Dimethyl heptane 0.57 6.516 4 0.387 0 0 3.061052 3.07 -0.01 

30 2,6-Dimethyl heptane 0.57 7.075 4 0.413 0 0 3.044522 3.03 0.01 

31 3,3-DImethyl heptane 0.57 5.862 4 0.362 0 0 3.093766 3.1 -0.01 

32 3,4-Dimethyl heptane 0.57 5.732 4 0.35 0 0 3.128951 3.12 0.01 

33 3-Ethyl heptane 0.57 5.477 3 0.353 0 0 3.128075 3.1 0.03 

34 Octane 0.57 9.08 2 0.402 0 0 3.069912 3.06 0.01 

35 Nonane 0.57 11.372 2 0.395 0 0 3.128951 3.11 0.02 

36 Decane 0.57 13.95 2 0.39 0 0 3.171365 3.16 0.01 

37 n-Tridecane 0.58 26.818 2 0.378 0 0 3.258097 3.26 0 

38 Nonadecane 0.58 48.757 2 0.371 0 0 3.353057 3.34 0.01 

39 Eicosane 0.58 53.929 2 0.37 0 0 3.362803 3.35 0.01 

40 Methanol 0.5 0.718 0 0 0 1 3.113515 3.12 -0.01 

41 Ethanol 0.53 1.292 1 0.316 0 1 3.108614 3.12 -0.01 

42 Propanol 0.54 2.051 1 0.362 0 1 3.165897 3.17 0 

43 Isopropanol 0.54 1.35 2 0.365 0 1 3.059646 3.08 -0.02 

44 1-Butanol 0.55 3.162 1 0.359 0 1 3.234355 3.22 0.01 

45 2-Methyl-1-butanol 0.56 2.666 2 0.339 0 1 3.246491 3.21 0.04 

46 3-Methyl-1-butanol 0.56 2.775 2 0.381 0 1 3.165897 3.16 0.01 

47 1-Pentanol 0.56 4.48 1 0.358 0 1 3.233173 3.24 -0.01 

48 2-Pentanol 0.56 3.591 2 0.328 0 1 3.15487 3.19 -0.04 

49 1-Hexanol 0.56 6.103 1 0.357 0 1 3.250762 3.26 -0.01 

50 1-Heptanol 0.56 7.957 1 0.356 0 1 3.292126 3.29 0 

51 2-Methyl 2-heptanol 0.57 6.835 3 0.327 0 1 3.209229 3.21 0 

52 2-Octanol 0.57 9.205 2 0.337 0 1 3.270329 3.27 0 

53 1-Nonanol 0.57 12.477 1 0.356 0 1 3.328268 3.34 -0.01 

54 1-Decanol 0.57 15.134 1 0.355 0 1 3.363149 3.36 0 

55 2-Dodecanol 0.57 20.158 2 0.343 0 1 3.372798 3.36 0.01 

56 3-Dodecanol 0.57 19.838 2 0.331 0 1 3.353407 3.35 0 

57 4-Dodecanol 0.57 19.583 2 0.333 0 1 3.326115 3.34 -0.01 

58 Benzyl alcohol 0.58 2.955 0 0.299 0 1 3.663562 3.56 0.1 

59 Allyl alcohol 0.57 2.003 0 0.236 0 1 3.247658 3.29 -0.04 

60 Cyclopentanol 0.58 1.585 0 0.277 0 1 3.497113 3.48 0.02 

61 Cycloheptanol 0.58 1.947 0 0.294 0 1 3.501646 3.5 0 

62 1,2-Propanediol 0.53 1.576 1 0.258 0 2 3.819908 3.76 0.06 

63 1,3-Propanediol 0.53 2.691 0 0.267 0 2 3.83298 3.78 0.05 
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suitability of the associative neural network model and shows

a good agreement of associative neural network predicted

values with experimental one. The residual of the associative

neural network predicted values the log (ST) are plotted against

their experimental values (Fig. 3). The propagation of residuals

on both sides of zero indicates that no systematic error exists

in the development of associative neural network. The number

of compounds not correctly predicted by the model is very

limited. Diisopropyl and benzylamine have high residual value.

Cross-validation is a popular technique to explore the stability

of developed models. In this validation technique, a number

of modified data sets are created by deleting, one compound.

S. No Compound name m.p. L1v C-001 X2Av nN nO Experimental log st Predicted log (ST) Residual 

64 1,5-pentanediol 0.55 5.283 0 0.302 0 2 3.768153 3.75 0.02 

65 Methylamine 0.5 0.838 0 0 1 0 2.988708 3.02 -0.03 

66 Dimethylamine 0.53 1.53 0 0.5 1 0 3.294725 3.2 0.09 

67 Trimethylamine 0.54 1.221 0 0.447 1 0 2.636912 2.81 -0.17 

68 Ethylamine 0.53 1.351 1 0.408 1 0 2.990217 3 0 

69 Diethylamine 0.55 3.821 2 0.319 1 0 3.016515 3.06 -0.04 

70 Propylamine 0.54 2.274 1 0.394 1 0 3.107721 3.09 0.02 

71 Dipropylamine 0.56 7.196 2 0.35 1 0 3.127637 3.15 -0.02 

72 Tripropylamine 0.57 4.211 3 0.316 1 0 3.127637 3.14 -0.01 

73 Butylamine 0.55 3.423 1 0.381 1 0 3.178054 3.15 0.03 

74 Allylamine 0.57 2.127 0 0.262 1 0 3.215671 3.25 -0.03 

75 Hexylamine 0.56 6.54 1 0.37 1 0 3.268047 3.24 0.03 

76 Isohexylamine 0.56 4.6 2 0.387 1 0 3.152309 3.14 0.01 

77 Dihexylamine 0.57 23.488 2 0.352 1 0 3.312366 3.31 0 

78 Ethylene diamine 0.52 2.096 0 0.289 2 0 3.736955 3.68 0.06 

79 Cyclohexyl amine 0.58 2.168 0 0.3 1 0 3.459781 3.42 0.04 

80 Dibenzyl amine 0.68 11.155 0 0.188 1 0 3.716008 3.7 0.02 

81 Aniline 0.66 2.292 0 0.176 1 0 3.753496 3.71 0.04 

82 1-Decene 0.59 13.086 1 0.356 0 0 3.178054 3.18 0 

83 1-Heptene 0.59 6.492 1 0.357 0 0 3.010621 3.06 -0.05 

84 1-Nonene 0.59 10.634 1 0.356 0 0 3.136363 3.14 0 

85 1-Tridecene 0.59 22.066 1 0.355 0 0 3.267285 3.27 0 

86 Cyclohexene 0.61 1.475 0 0.293 0 0 3.287655 3.25 0.04 

87 Cyclopentene 0.62 1.187 0 0.28 0 0 3.196221 3.2 0 

88 Benzaldehyde 0.7 2.645 0 0.17 0 1 3.651697 3.64 0.01 

89 Butyraldehyde 0.58 2.615 1 0.318 0 1 3.21165 3.26 -0.05 

90 2-Furaldehyde 0.68 2.481 0 0.142 0 2 3.77872 3.76 0.02 

 
TABLE-2 

TESTING SET FOR 26 COMPOUNDS WITH DESCRIPTORS 

S. No Compound name m.p. L1v C-001 X2Av nN nO Experimental log (ST) Predict log (ST) Residual 

1 Butane 0.56 2.496 2 0.5 0 0 2.53 2.61 -0.08 

2 2,3-Dimethyl butane 0.57 2.045 4 0.415 0 0 2.86 2.89 -0.03 

3 3-Methyl pentane 0.57 3.163 3 0.384 0 0 2.9 2.98 -0.08 

4 3-Ethyl-2-methylpentane 0.57 2.748 4 0.353 0 0 3.07 3.04 0.03 

5 2,2,4 -Trimethyl pentane 0.57 3.115 5 0.416 0 0 2.93 2.93 0 

6 3-Methyl hexane 0.57 4.65 3 0.384 0 0 2.99 3.03 -0.04 

7 2,2 -Dimethyl hexane 0.57 4.705 4 0.407 0 0 2.98 3 -0.02 

8 2,3,5-Trimethyl hexane 0.57 4.46 5 0.385 0 0 3.06 3.05 0.01 

9 4-Ethyl heptane 0.57 4.51 3 0.356 0 0 3.13 3.07 0.06 

10 Undecene 0.58 16.768 2 0.386 0 0 3.13 3.16 -0.03 

11 2-Butanol 0.55 2.342 2 0.314 0 1 3.09 3.16 -0.07 

12 2-Methyl-2-butanol 0.56 2.000 3 0.309 0 1 3.3 3.32 -0.02 

13 1-Octanol 0.57 10.096 1 0.356 0 1 3.31 3.34 -0.03 

14 5-Dodecanol 0.57 19.417 2 0.333 0 1 3.54 3.51 0.03 

15 Cyclohexanol 0.58 1.866 0 0.286 0 1 3.85 3.76 0.09 

16 1,3-butanediol 0.54 3.002 1 0.272 0 2 2.98 3.15 -0.17 

17 Diisopropylamine 0.56 5.379 2 0.338 1 0 3.2 3.24 -0.04 

18 Dibutylamine 0.57 11.573 2 0.351 1 0 3.69 3.41 0.28 

19 Benzylamine 0.58 3.217 0 0.304 1 0 2.91 3.04 -0.13 

20 1-Hexene 0.59 4.779 1 0.358 0 0 3.08 3.12 -0.04 

21 1-Octene 0.59 8.408 1 0.356 0 0 3.21 3.19 0.02 

22 1-Dodecene 0.59 18.807 1 0.355 0 0 3.24 3.24 0 

23 1-Tetradecene 0.59 25.569 1 0.355 0 0 3.29 3.29 0 

24 1-Pentadecene 0.59 29.346 1 0.355 0 0 3.3 3.3 0 

25 1-Hexadecene 0.59 33.371 1 0.355 0 0 3.32 3.32 0 

26 1-Heptadecene 0.59 37.668 1 0.355 0 0 3.34 3.33 0.01 
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For each reduced data set, the model is calculated and responses

for the deleted compounds are predicted from the model. In

this study, the predictive power of the models is checked by

leave one out cross-validation and the square of the cross-

validated correlation coefficient (q2) is used to measure the

models predictivity. A good correlation is obtained with LOO

correlation co-efficient q2 = 0.983. So the predictive power of

this model is very significant.

TABLE-3 
ARCHITECTURE AND SPECIFICATION  

OF THE GENERATED ASNN 

No. of nodes in the input layer 6 

No. Of nodes in the hidden layer 6 

No. of nodes in the output layer 1 

Seed value 38 

Number of KNN 10 

Activation function Logistic 1/(1+exp (-x)) 

 
TABLE-4 

STATISTICAL ANALYSIS OF  
ASSOCIATIVE NEURAL NETWORK 

Data set R2 q2 RMSE MAE 

Training 0.988 0.983 0.035 0.023 

Testing 0.932 0.912 0.0809 0.05 

 

Fig. 1. Scatter plot of the experimental vs. predicted surface tension values

of training set

Fig. 2. Scatter plot of the experimental vs. predicted surface tension values

of test set

Fig. 3. Scatter plot of experimental vs. residual error for training and test

set

Interpretation of descriptors: It is well accepted that

surface tension is governed by London dispersion forces in

organic compounds. From eq. 1, it should be concluded that

molecular interaction force is directly proportional to polari-

zability. Therefore descriptor mean atomic polarizability (Mp)

directly encodes information related to molecular polariz-

ability. The atom-centered fragment descriptor (C-001) is used

to differentiate the isomers within same group of compounds.

The descriptors nN and nO in the molecules relates a polar

interaction among the molecules in the bulk liquid. It is well

known that molecular polarizability is directly proportional

to number of electrons in the molecule. When the size (number

of electrons) of the molecule increases, intermolecular inter-

action is stronger, therefore the higher the surface tension will

be. Hence the WHIM descriptor L1v represents a measure of

molecular polarizability. The descriptor X2Av is used for hetero-

atom differentiation. It can be concluded that the descriptors

in the present QSPR model has definite chemical meaning

and these can account the structural features that affect on the

surface tension of the organic compounds.

Conclusion

The results of this study indicate that it is possible to

estimate the surface tension of organic compounds from their

theoretically derived molecular descriptors. The associative

neural network with 6-6-1 architecture produces high statistical

quality and low prediction error model. The six descriptors

involved in the present work, which can be calculated from

molecular structures, have definite physical meaning corres-

ponding to the different intermolecular interactions, which

takes place in bulk solution. The obtained results in this paper

suggest that the associative neural network predicts surface

tension of organic compounds very well compared with

previous studies. The QSPR models developed in this study

can provide a useful tool to predict the surface tension of new

compounds.
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