
Chemical oscillating reaction, which exhibits periodic

changes in concentration of some species (usually a reaction

intermediate), occurs only in the non-equilibrium systems1. A

Belousov-Zhabotinsky (BZ) reaction reaction, one of the most

famous examples of chemical oscillations, has been studied

owing to its unique kinetic non-equilibrium features2-4. These

kinetic features have made such system potentially useful in

the analytical chemistry field and some methods for determi-

nations of analytes based on their perturbation effects on

Belousov-Zhabotinsky reaction have been reported. These

analytes include Ag+ ion5, [Fe(CN)6]
3- or [Fe(CN)6]

4- ion6, hydro-

quinone7 and vitamin C8.

Oscillating reactions catalyzed by macrocyclic complex

of Cu(II) or Ni(II) were first discovered by Yatismirskii and

Tikhonova9. Recently, we have reported series of macrocyclic

complex-catalyzed oscillating systems10-13. We have studied

unique features of a macrocyclic complex-catalyzed oscillating

system10: NaBrO3-H2SO4-malic acid-[CuL] (ClO4)2, where the

ligand L in the complex [CuL] (ClO4)2 is 5,7,7,12,14,14-

hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. We

have also used this [CuL](ClO4)
2- catalyzed oscillating system

for kinetic determination of Ag+ 14, pyrogallol15, calcium

pantothenate16, Alizarin red S17 and catechol18. In this notes,

we have surveyed the effect of xylenol orange perturbation on

this novel Belousov-Zhabotinsky system.
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of logarithm of the xylenol orange in the range 2.5 × 10-7-2.5 × 10-4 M. Hence, an array of xylenol orange involving its perturbation effects

on a Belousov-Zhabotinsky system has been established.
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The catalyst [CuL] (ClO4)2 was prepared according to lite-

rature methods14,19,20 and was identified by IR spectra and

elemental analysis. All chemicals used were of analytical

reagent grade. Solutions of 0.6 M NaBrO3, 2 M malic acid,

0.0221 M [CuL] (ClO4)2 were prepared in 1.15 M sulfuric

acid. Solutions of 0.01 M xylenol orange were made immedi-

ately before the experiment. Solutions with lower concentrations

were prepared prior to use. Double distilled water was used in

all cases.

The oscillating reaction experiments were conducted by

the methods as described previously15,18. The perturbation

experiments were carried out by injecting 0.2 mL of sample

containing variable amounts of xylenol orange to oscillating

system in steady state, causing the amplitude to increase

sharply. Thus, changes of oscillating amplitude ∆A = A-A0

(A0 and A are the oscillation amplitude before and after the

injection, respectively) were used as parameter to determine

xylenol orange (Fig. 1).

We performed perturbation experiments under the

following conditions: [NaBrO3] = 0.015 M; [malic acid] = 0.2

M; [H2SO4] = 1.15 M; [CuL](ClO4)2 = 2.65 × 10-3 M. The

response to the xylenol orange perturbation was obtained by

employing changes in oscillation amplitude (∆A) versus

different concentrations of xylenol orange. The change in

oscillation amplitude (∆A) obtained is linearly proportional
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Fig. 1. Typical oscillation profiles for the proposed oscillation system in

the absence and presence of variable amounts of xylenol orange

perturbation using platinum electrode: (a) [Xylenol orange] = 0.000

M, (b) [xylenol orange] = 5.0 × 10-5 M. Common conditions:

[NaBrO3] = 0.015 M; [malic acid] = 0.2 M; [H2SO4] = 1.15 M;

[CuL](ClO4)2 = 2.65 × 10-3 M

to the logarithm of the xylenol orange concentration over the

range of 2.5 × 10-7-2.5 × 10-4 M (Fig. 2). The calibration data

obtained obey the following linear regression equation:

 

 

Fig. 2. Calibration curve of the increase in amplitude versus the logarithm

of [xylenol orange] in the range of 2.5 × 10-7-2.5 × 10-4 M. Common

conditions: [NaBrO3] = 0.015 M; [malic acid] = 0.2 M; [H2SO4] =

1.15 M; [CuL](ClO4)2 = 2.65 × 10-3 M

∆A = 130.96 + 19.34 log [xylenol orange]

(R = 0.99388, N = 10)

The precision (RSD), calculated from five perturbations

of 5.0 × 10-5 M xylenol orange, was 4.3 %. The detection limit

obtained is 1.3 × 10-7 M. Such a precision is quite acceptable.

Table-1 shows the effects of some foreign species on the

determination. It is found that Ag+, Cl–, Mn2+, I– and NO2 have

serious interference. Ca2+, Mg2+, Al3+, Ni2+ and Li+ show no

interference on determination. The results are acceptably

selective.

TABLE-1 

EFFECTS OF THE SOME FOREIGN SPECIES 

Foreign ions and species Tolerated ratio 

Ca2+, Mg2+, Al3+ 

Ni2+, Li+ 

Fe3+, Zn2+ 

Glucose, phenol, F–, OAc–, Cu2+ 

Ag+ 

Cl– 

Mn2+ 

I–, NO2
– 

1300 

100 

10 

1 

0.5 

0.1 

0.05 

0.01 
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