
INTRODUCTION

Bioethanol is a liquid biofuel which can be produced from

several different biomass feedstocks. This fuel has a higher

octane number, broader flammability limits, higher flame

speeds and higher heat of vapourization than gasoline. Fuel

ethanol production from lignocellulosic biomass is emerging

as one of the most important technologies for sustainable

production of renewable transportation fuels. Ethanol production

process only uses energy from renewable energy sources1 and

has deserved a great deal of interest in the last two decades2.

But conversion technologies for producing ethanol from cellu-

losic biomass recourse are under development and have not

been demonstrated commercially, yet3. The use of lignocellu-

loses materials like agricultural residue may contribute to the

economy of the global conversion process. These biomass is

the most abundant and attractive renewable resource in many

countries for the production of ethanol4 because it does not

compete with animal feed and food industry.

In 2007, total production of walnut was 17 × 105 metric

tons. China (503000 tons), USA (209000 tons), Turkey

(184000 tons) and Iran (170000 tons) are the main producers.

Walnut fruit consists of 3 main parts, meat, woody skin and

green skin. Green skin consists of cellulose, hemicelluloses
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and lignin. Cellulose is a linear, crystalline homo polymer with

a repeating unit of glucose strung together β-glucosidic

linkages. The structure is rigid and harsh treatment is required

to break it down5. In contrast to cellulose, which is a polymer

of only glucose, hemicellulose is a hetero-polymer of D-

xylose, D-glucose, D-galactose, D-mannose and L-arabinose6.

The carbohydrate polymers in the green skin need to be

converted to simple sugars before fermentation through a

process called hydrolysis.

The production of ethanol from this lignocellulosic

biomass involves the different steps of pretreatment, hydrolysis

(saccharification), fermentation and ethanol recovery1. Pre-

treatment affects the structure of biomass by solubilizing

cellulose, reducing crystallinity and increase the available

surface area and pore volume of the substrate. Hydrolysis of

biomass is essential for generation of fermentable sugars which

are then converted to ethanol by microbal action1. Hydrolysis

(saccharification) breaks down the hydrogen bonds in the

hemicelluloses and cellulose fraction into their sugar compo-

nents, pentose and hexose3. The reaction is catalyzed by dilute

acid, concentration acid or enzymes.

Hydrolysis of lignocelluloses by concentrated sulfuric acid

or hydrochloric acid is an old process. Braconnot in 1819 first

discovered that cellulose can be converted to fermentable sugar
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by concentrated acids7. Concentrated acid processes are

generally reported to give higher sugar yield (e.g. 90 % of

theoretical glucose yield) and consequently higher ethanol

yield, compared to dilute-acid processes. Furthermore, the

concentrated acid processes can operate at low temperature,

which is a clear advantage compared to dilute acid processes.

Reaction times are typically much longer than for dilute acid

process8. Sulfuric acid is the most investigated acid, although

other acids such as HCl9 have also been used. However, the

concentration of acid is very high in this method (e.g. 30-70

%) and dilution and heating of the concentrated acid during

the hydrolysis process make it extremely corrosive. Therefore,

the process requires either expensive alloys or specialized non-

metallic constructions, such as ceramic or carbon-brick lining.

The acid recovery is an energy-demanding process. In addition,

when sulfuric acid is used, the neutralization process produces

large amounts of gypsum10. Concentrated acid process provides

a complete and rapid conversion of cellulose to glucose and

hemicelluloses to 5-carbon sugars with little degradation11.

Balat et al.11 performed the concentrated acid hydrolysis of

mixed wood chips and found that maximum sugar recovery

(78-82 %) of theoretical yield was achieved at sulfuric acid

concentration (26 %) for 2 h of residence time. The critical

factors needed to make this process economically viable are

to optimize sugar recovery and cost effectively recovers the

acid for recycling11. This process requires a neutralization step

costly equipment and high temperature applied in the acid-

pretreatment which causes the production of toxic byproducts

such as furfural and hydroxyl methyl furfural (HMF)4. The

low temperature and pressure also minimize the degradation

of sugars. It is a relatively slow process and need acid recovery,

without acid recovery large lime must be use and large amounts

of calcium salt is formed3. These salts have low solubility and

normally removed by filtration12.

Cellulose, hemicellulose and lignin are broken down to

mainly glucose, mannose or xylose and phenolic compounds

during acid hydrolysis. Further decompositions occur during

these process conditions yielding other unexpected compounds

such as furfural from pentose and acetic acid from acetyl

groups in hemicellulose. For the fermentation process, the

presence of these materials in hydrolysates can hinder or

prevent a subsequent fermentation step. Furfural has been

reported to be a strong inhibitor for S. cerevisiae. It decreases

significantly the CO2 evaluation rate, the cell multiplication

and the total viable cell number in the early phase of fermen-

tation13. The inhibitory effect of acetic acid is pH-dependent.

Very high concentration of acetic acid increase acidification

of cytoplasm and cell death. Two mechanisms have been

proposed to explain the inhibitory effect of acetic acid,

uncoupling and intracellular anion accumulation14. Therefore,

hydrolysis with low concentrations of inhibitors is required.

It is important to determine the glucose concentration

because this sugar is the main carbon source for most micro-

organisms15. Due to the difficulty in finding a strict mechanism

for hydrolysis reactions, it is usual to use simplified models to

determine the kinetics of the hydrolysis of lignocellulosic

material to obtain sugar solutions (xylose and glucose) with

low concentrations of inhibitor (furfural and acetic acid)15,16.

In the first model (QE model), the response of variable can be

predicted by following a second-order model (eqn. 1) which

allows the influence of each factor on the response as well as

interactions among factors to be determined17-21.

Y = A0 + A1.C + A2.T + A3.S + A4.t + A5.C
2
 + A6.T

2

+ A7.S
2
 + A8.t

2
 + A9.C.T + A10.C.S + A11.C.t + A12.T.S

 + A13.T.t +  A14.S.t (1)

The study of pretreatment performance of walnut green

skin by concentrated sulfuric acid was addressed by perfor-

ming the experimental design in which process temperature

(T, ºC), process time (t, min), solid content (S, %) and acid

concentration(C, %), were selected as factors and glucose

concentration (Gl, %) was considered as response (Y). In

second model, the models usually associated with dilute acid

hydrolysis were first proposed by Saeman22, for the hydrolysis

of cellulose from Douglas fir wood using sulfuric acid. The

models proposed in the literature use irreversible pseudo-

homogeneous first-order reactions23-26.

Polymer
k1 monomer 

k2
decomposition products

where k1 is the rate of conversion of polymer (glucan, xylan)

to monomer (glucose, xylems) and k2 is the rate of decom-

position of monomers.

Despite all effort to find a appropriate kinetic model to

describe acid hydrolysis of biomass, success in mathematical

model many researcher have turned their attention to ANNs

and have successfully applied them for modeling these

processes27-30. Recently the application of neural network has

become more popular in chemical engineering particularly

chemical hydrolysis. Artificial neural networks can be

considered as a simplified mathematical formulation of central

neural system in human being. They are implemented through

computer program or electronic hardware devices. The major

advantage of this powerful tool is that, it can be synthesized

without detailed knowledge of underlying process31. The

application of neural networks seem to be a promising tool to

solve modeling problems for the cases where as a result of

insufficient knowledge the governing mechanism can not be

formulated. The flexibility and accuracy of neural network

depend on the net architecture and treatment of available

experimental data32-34. Their applications include pattern classi-

fication, control and prediction. The aim of this work is to

propose a methodology based on artificial neural network for

concentrated acid hydrolysis.

EXPERIMENTAL

Raw material: Walnut green skin (WGS) was collected

in September of 2009 from Spidan village (North Khorasan,

Iran). It was washed by distilled water, air dried and milled

using vibratory disc mill (Retsch RS 100) to particle size

smaller than 50 micrometers and stored in sealed plastic bags

at the room temperature. For the determination of the chemical

composition of the walnut green skin, preparation of the test

specimens was carried out according to TAPPI T 257 om

(1985) standard. Extracted materials, lignin and ash contents

were determined according to TAPPI standards T 204 om

(1988), T 222 om (1988), T 211 om (1988) standards, respec-

tively. The hemicellulose and cellulose contents were deter-

mined according to Wise's chlorite and K. Rschner-Hoffner

nitric acid methods35,36. The resulted composition of walnut

green skin is shown in Table-1.
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TABLE-1 
COMPOSITION OF WALNUT GREEN SKIN 

Composition Dry weight (%) 

Cellulose 21.5 

Hemicellulose 13.25 

Extractive M 18.25 

Lignin 26.07 

Ash 20.93 

 

Experimental condition: Based on previous experience

with concentrated acid hydrolysis to ensure a broad range of

response, three levels for each factor including temperature,

acid concentration, solid content and time were considered

and walnut green skin was pretreated at 84 different operational

conditions. Selected conditions were shown in Table-2a-c.

Every experiment was repeated for three times and the average

value was reported.

Pilot plant: Dried walnut green skin was treated with 20,

40, 60 wt % sulfuric acid in screw-capped laboratory bottles

(Pyrex bottles) in a hot water jacket with an electric heater

and a temperature controller ( Fig. 1) at 65, 80, 90 ºC for 2, 3,

4 h with agitation by a laboratory mixer, respectively. A distiller

was used to prevent water evaporation. Solid to liquid ratio of

5, 10 and 15 % was applied, respectively. Once the temperature

of reaction mixture reached to the designed point, pretreatment

time was started. At the end of each run the bottle was removed

from the heating jacket and put in a cool water bath, sodium

hydroxide was added to adjust until its pH value around 7 and

then solids were separated by filtering, washed with distilled

water and final solution reached to 1000 mL. A 200 mL sample

of the solution was analyzed by HPLC.

 Fig. 1. Experimental setup of hydrolysis reactor

Analytical methods: The composition of the hydrolyzate

from acid hydrolysis (glucose, xylose, mannose, arabinose,

galactose, furfural and acetic acid) was determined by HPLC

(JASCO model). Glucose, xylose, galactose, mannose and

arabinose were analyzed by bio-rad column Aminex HPX-

87P and detected by RI detector at 40 ºC and acetic acid and

furfural were analyzed by bio-rad column Aminex HPX-87H

and detected by UV detector at 210 nm. The results were shown

as the percentage of g product/g raw material (e.g. 2 % g glucose/

g raw material) in Table-2 and Figs. 2 and 3.

TABLE-2a 
OPERATION CONDITIONS AND RESULTS OF ACID HYDROLYSIS USING WALNUT GREEN SKIN (WGS) (20 % ACID) 

Run Temp (ºC) t(min) H2SO4 (%) WGS [%] Glucose (%) C5 (%) C6 (%) Furfural (%) Acetic acid (%) 

1 65 120 20 5 2.5 0.288 2.93 0.355 2.3 

2 65 180 20 5 3.7 0.144 4.06 0.991 2.61 

3 65 240 20 5 4.8 1.178 5.96 1.694 4.08 

4 65 120 20 10 2.95 1.042 3.11 0.606 2.57 

5 65 180 20 10 4.3 0.96 4.15 1.242 2.89 

6 65 240 20 10 5.6 1.99 6.07 1.9 4.36 

7 65 120 20 15 3.8 1.44 4.64 1.086 3.21 

8 65 180 20 15 5.1 1.354 5.69 1.722 3.53 

9 65 240 20 15 6.1 2.39 7.6 2.38 5 

10 80 120 20 5 3.3 0.513 3.94 0.76 2.8 

11 80 180 20 5 4.4 0.43 4.99 1.396 3.12 

12 80 240 20 5 5.3 1.46 6.91 2.056 4.59 

13 80 120 20 10 3.7 1.327 4.05 1.011 3.08 

14 80 180 20 10 4.7 1.243 5.10 1.647 3.4 

15 80 240 20 10 6 2.277 7.01 2.305 4.87 

16 80 120 20 15 4.9 1.723 5.59 1.491 3.72 

17 80 180 20 15 6.2 1.64 6.64 2.127 4.04 

18 80 240 20 15 7 2.67 8.55 2.785 5.51 

19 90 120 20 5 4 0.776 4.09 1.445 3.9 

20 90 180 20 5 5.7 0.692 5.95 2.081 4.21 

21 90 240 20 5 6.5 1.728 7.86 2.739 5.68 

22 90 120 20 10 4.5 1.59 5.01 1.696 4.17 

23 90 180 20 10 5.9 1.566 6.00 2.332 4.49 

24 90 240 20 10 7.0 2.54 7.97 2.99 5.96 

25 90 120 20 15 6 1.986 6.54 2.176 4.81 

26 90 180 20 15 7.6 1.902 7.6 2.812 5.13 

27 90 240 20 15 8.5 2.936 9.5 3.47 6.6 
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TABLE-2b 
OPERATION CONDITIONS AND RESULTS OF ACID HYDROLYSIS USING WALNUT GREEN SKIN (WGS) (40 % ACID) 

Run Temp (ºC) t (min) H2SO4 (%) WGS (%) Glucose (%) C5 (%) C6 (%) Furfural (%) Acetic acid (%) 

1 65 120 40 5 4.04 0.33 5.23 0.005 3.71 

2 65 180 40 5 5.47 0.25 6.27 0.03 4.03 

3 65 240 40 5 6.6 1.283 8.19 0.439 5.5 

4 65 120 40 10 4.25 1.147 5.33 0.01 4 

5 65 180 40 10 5.66 1.063 6.39 0.032 4.31 

6 65 240 40 10 6.72 2.10 8.29 0.69 5.78 

7 65 120 40 15 5.03 1.54 6.87 0.01 4.63 

8 65 180 40 15 6.43 1.46 7.92 0.512 4.95 

9 65 240 40 15 7.32 2.50 9.83 1.17 6.42 

10 80 120 40 5 5.15 0.62 6.18 0.45 4.22 

11 80 180 40 5 6.54 0.54 7.21 0.186 4.54 

12 80 240 40 5 7.41 1.57 9.13 0.844 6.01 

13 80 120 40 10 5.52 1.43 6.28 0.01 4.5 

14 80 180 40 10 6.99 1.35 7.33 0.437 4.81 

15 80 240 40 10 7.89 2.38 9.25 1.095 6.28 

16 80 120 40 15 6.7 1.83 7.82 0.281 5.14 

17 80 180 40 15 8.26 1.74 8.87 0.917 5.45 

18 80 240 40 15 9.07 2.78 10.78 1.575 6.92 

19 90 120 40 5 6.32 0.88 7.13 0.235 5.31 

20 90 180 40 5 7.91 0.79 8.19 0.871 5.63 

21 90 240 40 5 8.83 1.83 10.09 1.53 7.1 

22 90 120 40 10 6.69 1.69 7.24 0.486 5.59 

23 90 180 40 10 8.30 1.61 8.29 1.122 5.9 

24 90 240 40 10 9.18 2.64 10.21 1.78 7.37 

25 90 120 40 15 8.12 2.09 8.78 0.966 6.23 

26 90 180 40 15 9.84 2.80 9.04 1.602 6.54 

27 90 240 40 15 10.62 3.04 11.74 2.26 8.01 

 
TABLE-2c 

OPERATION CONDITIONS AND RESULTS OF ACID HYDROLYSIS USING WALNUT GREEN SKIN (WGS) (60 % ACID) 

Run Temp (0C) t(min) H2SO4 (%) WGS (%) Glucose (%) C5 (%) C6 (%) Furfural (%) Acetic acid (%) 

1 65 120 60 5 0 0 0 0 2.55 

2 65 180 60 5 0 0 0 0 2.87 

3 65 240 60 5 0.155 0 1.33 0.903 4.34 

4 65 120 60 10 0.009 0 0 0 2.83 

5 65 180 60 10 1.21 0 0 0 3.15 

6 65 240 60 10 2.346 0.676 1.589 0.339 4.62 

7 65 120 60 15 0.076 0.122 0.16 0 3.47 

8 65 180 60 15 1.41 0.038 1.209 0.161 3.79 

9 65 240 60 15 2.54 1.072 3.118 0.819 5.26 

10 80 120 60 5 0 0 0 0 3.06 

11 80 180 60 5 0 0 0 0 3.38 

12 80 240 60 5 0.54 0.147 2.109 0.493 4.85 

13 80 120 60 10 0.27 0 0 0.55 3.34 

14 80 180 60 10 1.6 0 0.546 0.61 3.65 

15 80 240 60 10 2.73 0.961 2.529 0.74 5.12 

16 80 120 60 15 0.467 0.407 1.103 0 3.98 

17 80 180 60 15 1.8 0.323 2.147 0.566 4.29 

18 80 240 60 15 2.93 1.357 4.063 1.224 5.76 

19 90 120 60 5 0.293 0 0 0 4.15 

20 90 180 60 5 0.888 0 0.843 0.52 4.47 

21 90 240 60 5 2.02 0.41 3.37 1.178 5.94 

22 90 120 60 10 1.75 0.274 0.526 0.135 4.43 

23 90 180 60 10 3.08 0.19 1.6 0.771 4.74 

24 90 240 60 10 4.21 1.224 3.486 1.429 6.21 

25 90 120 60 15 1.94 0.67 2.06 0.615 5.07 

26 90 180 60 15 3.276 0.586 3.114 1.251 5.38 

27 90 240 60 15 4.41 1.62 5.02 1.91 6.65 
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Fig. 2. Response surface for glucose recovery in liquid phase as a function

of acid concentration and temperature according to the QE model
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Fig. 3. Response surface for glucose recovery in liquid phase as a function

of solid content and time according to the QE model

Neural network architecture: In this study, a systematic

methodology has been applied to develop two multilayer feed

(MLP) forward fully connected neural network which would

be used for monitoring the previously described pilot plant.

Multilayer feed networks are the most commonly used one

for the function approximation. This multilayer feed networks

consist of groups of interconnected neurons arranged in layers

corresponding to input layer, hidden and output layers (Fig. 4).

The inputs of the multilayer feed are temperature, acid concen-

tration, solid content and reaction time while the output is glucose

concentration. The network resembles an input/output model,

whose parameters are synaptic weights and biases. This type

of network has the potential of approximating most types of

non-linear functions, irrespective how much they are complex.

According to Vafaei et al.31, a multilayer feed network that

has only one hidden layer is able to approximate almost any

type of nonlinear mapping.

The main goal when designing a neural network model is

to achieve high generation ability, which means that reasonable

model response is obtained for data not used during the model

development. At this point, it is assumed that the training set

is representative of the population and that the test data set

comes from the same population34, for this reason, the data

was split into 79 experiments a training set and 5 experiments

as independent test set to assess the generation ability of the

developed ANNs.

Fig. 4. Schematic of the MLP network used in this study

During the training algorithm, input data are fed to the

input layer of the network and the difference between the

output layer results and the desired outputs (i.e., network

error) is used as a criterion for adjustment of network's synaptic

weights and biases. At the beginning, all synaptic weights and

biases are initialized randomly. Then, the network is trained

based on an error index and an optimization algorithm, until it

correctly simulates the input/output mapping. The required

numbers of training data points and hidden layer neurons are

the two challenges that have to be tackled appropriately. The

determination of the number of nodes for the hidden layers is

often done by trial and error. Too few neurons in the hidden

layer prevent the network to get trained appropriately. On the

other hand, too many neurons causes the network to respond

very well at the training points, but when the network is

exposed to new data leads to unacceptably large errors. These

problems that occur during neural network training is called

"overfitting". Indeed, the network has memorized the training

examples, but it has not learned to set up a general correlation

between input and output variables. One solution to the

overfitting problem is to divide the data points into the training

and validation or test data31.

Six different net topology were considered with different

number of neurons (Table-3), all ANNs consisted of three

layers that is only one hidden layer was used between the input

and output layers (Fig. 4). Output layer of first neurons was

input layer of second. Two functions were chosen for first

neurons as activation function, sigmoid and tang sic. The

TABLE-3 
NET TOPOLOGY AND RESULTS 

Net Topology First Activation function Second activation function MSE Repeat  ARE 

1 4-6-1 Tansig Purlin 0.01682 125 0.351 

2 4-6-1 Logsig Purlin 0.0644 1000 0.4 

3 4-8-1 Tansig Purlin 0.01695 180 0.099 

4 4-8-1 Logsig Purlin 0.01698 142 0.148 

5 4-11-1 Tansig Purlin 0.001790 500 0.145 

6 4-11-1 Logsig Purlin 0.0016871 64 0.048 
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neurons in the output layer has linear transfer functions.

Supervized learning was used to train different ANNs created

by varying the number of neurons in the hidden layer. During

the training process, the mean squared error function was

minimized by adjusting the network parameters.

RESULTS AND DISCUSSION

Table-3 represents the results of trial and error calculations

used to determine the number of neurons in the hidden layer.

According to this table, it is clear that the trained MLP that

has one hidden layer with 11 logsig sigmoid neurons has a

lower average relative error (ARE = 0.048) for test data. There-

fore, it is selected as the most suitable network to simulate the

concentrated acid hydrolysis process. Training data were fitted

with a mean square error (MSE) about 0.017. Fig. 5 show the

training behaviour. After 64 repeat the result was achieved.
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Fig. 5. Training behaviour of the MLP network used in this study

In Fig. 6, the correlation between the network estimations

and experimental data is illustrated with best linear fit and the

correlation coefficient. According to these results, the proposed

MLP follows the experimental data with a well accuracy. The

R value of 0.997 indicates a good correlation among simulation

results and experimental data. The network simulation results

versus experimental test data are presented in Fig. 7. Although

the developed MLP never has seen the test data, it can reason-

ably simulate the behaviour of the hydrolysis in the test region.

The value of the correlation coefficient for the test data is 0.914,

which indicates sufficiently good correlation between prediction

and experimental test data.

Conclusion

This work confirm that walnut green skin can be consi-

dered as a suitable feed stock for sugar production in bioethanol

production process. Concentrated acid hydrolysis helps to

reach the fermentable sugar in normal process conditions. This

process could be model by a neural networks. According to

this study, it is clear that the trained MLP that has one hidden

layer with 11 tangent sigmoid neurons has a lower average

relative error for test data. Therefore, it is selected as the most

suitable network to simulate the concentrated acid hydrolysis

process.
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