

# Isolation and Biological Activities of Furanoflavones from the Roots of Codonopsis cordifolioidea

HONGQIONG LENG<sup>1,2</sup>, GUANGYU YANG<sup>2</sup>, YONGKUAN CHEN<sup>2</sup>, YADONG GUO<sup>1,\*</sup> and ZHANGYU CHEN<sup>1,3</sup>

<sup>1</sup>School of Pharmaceutical Science & Yunan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P.R. China

<sup>2</sup>Key Laboratory of Tobacco Chemistry of Yunnan Province, Yunnan Academy of Tobacco Science, Kunming 650106, P.R. China <sup>3</sup>China Tobacco Yunnan Industry Company (Ltd.), Kunming 650000, P.R. China

\*Corresponding author: E-mail: yadong\_guo@yahoo.com.cn; ygy1110@163.com

(Received: 20 December 2011;

Accepted: 10 October 2012)

AJC-12270

A new furanoflavone, cordifoliketone C (1), together with three known furanoflavones (2-4), were isolated from the roots of *Codonopsis cordifolioidea*. Their structures were determined by means of HRESIMS, extensive <sup>1</sup>D and <sup>2</sup>D NMR spectroscopic studies and chemical evidence. Compounds 1-4 were tested for their anti-HIV-1 activity and antitobacco mosaic virus activity, respectively. The results showed that compounds 1-4 have modest anti-HIV-1 activity and anti-tobacco mosaic virus activity, respectively.

Key Words: Codonopsis cordifolioidea, Furanoflavones, Anti-HIV-1 activity, Antitobacco mosaic virus activity.

## **INTRODUCTION**

The genus *Codonopsis* (Campanulaceae) is represented in China by 39 species. Some of *Codonopsis* species such as *C. pilosula* and *C. tangshen* are commonly used as herbal remedies due to their tonic effects<sup>1</sup>. In addition, the roots of some *Codonopsis* species including *C. cordifolioidea*, *C. bulleyana*, *C. micrantha* and *C. subglobosa* are well-known vegetables in southwest China<sup>2.3</sup>. *C. cordifolioidea* Tsoong is a herbaceous plant spread in Yunnan, Tibet and Sichuan Provinces. Its roots, locally known as Choushen, have been used as a food in Yunnan Province since ancient times. Meanwhile, this species has become an important economic plant widely cultivated in several areas of Yunnan Province<sup>4,5</sup>. The previous phytochemical researches on *C. cordifolioidea* has revealed that phenylpropanoids, lignans, as well as flavonoids are major components isolated from this plant<sup>5,6</sup>.

Motivated by search for bioactive metabolites from this plant, the phytochemical investigation on *C. cordifolioidea* was carried out. As a result, a new furanoflavone, cordifoliketone C (1), together with three known furanoflavones (2-4), were isolated from the roots of *C. cordifolioidea*. The anti-HIV-1 activity and antitobacco mosaic virus activity of compounds 1-4 were tested. This work deals with the isolation, structural elucidation and biological activities of the furanoflavones isolated.

## EXPERIMENTAL

Optical rotations were measured with a Horiba SEPA-300 polarimeter. UV spectra were obtained using a Shimadzu

UV-2401A spectrophotometer. A Tenor 27 spectrophotometer was used for scanning IR spectroscopy with KBr pellets. <sup>1</sup>D and <sup>2</sup>D NMR spectra were recorded on DRX-500 spectrometers with TMS as internal standard. Unless otherwise specified, chemical shifts ( $\delta$ ) were expressed in ppm with reference to the solvent signals. HRESIMS was performed on an API QSTAR time-of-flight spectrometer and a VG Autospec-3000 spectrometer, respectively. Preparative HPLC was performed on a Shimadzu LC-8A preparative liquid chromatograph with a ZORBAX PrepHT GF (21.2 mm × 25 cm, 7.0 mm) column or a Venusil MP  $C_{18}$  (20 mm × 25 cm, 5.0 mm) column. Column chromatography was performed with Si gel (200-300 mesh, Oing-dao Marine Chemical, Inc., Oingdao, China), Lichroprep RP-18 gel (40-63 µm, Merck, Darmstadt, Germany) and MCI gel (75-150 µm, Mitsubishi Chemical Corporation, Tokyo, Japan). The fractions were monitored by TLC and spots were visualized by heating Si gel plates sprayed with 5 % H<sub>2</sub>SO<sub>4</sub> in EtOH.

The roots of *C. cordifolioidea* were collected in Dali Prefecture, Yunnan Province, People's Republic of China, in September 2009. The identification of the plant material was verified by Prof. Y.J. Chen (Yunnan Nationalities University). A voucher specimen (YNNI 09-9-13) has been deposited in our laboratory.

**Extraction and isolation:** The air-dried and powdered roots of *C. cordifolioidea* (1.5 kg) were extracted four times with 70 % methanol ( $4 \times 2.0$  L) at room temperature and filtered. The crude extract (102 g) was applied to silica gel

(200-300 mesh) column chromatography, eluting with a chloroform-acetone gradient system (20:1, 9:1, 8:2, 7:3, 6:4, 5:5), to give six fractions A-F. The further separation of fraction C (9:1, 15.8 g) by silica gel column chromatography, eluted with chloroform-methanol (9:1, 8:2, 7:3, 6:4, 1:1), yielded mixtures C1-C5. Fraction C1 (9:1, 3.15 g) was subjected to preparative HPLC (52 % methanol, flow rate 12 mL/min) to give **1** (22.5 mg) and **2** (28.2 mg). Fraction C2 (8:2, 2.94 g) was subjected to preparative HPLC (40 % methanol, flow rate 12 mL/min) to give **3** (35.8 mg) and **4** (24.0 mg).

**Anti-TMV assays**: The Anti TMV activity was tested using the half-leaf method<sup>12</sup>. The inhibitory activities of the compounds against TMV replication were tested using two approaches. First, the half-leaf method was used to test the antiviral activity in the local lesion host *N. glutinosa in vivo*. Then, the leaf-disk method was used to evaluate the antiviral activity of the compounds in the systemic infection host *N. tabacum cv.* K326. Ningnanmycin (20  $\mu$ M), a commercial product for plant disease in China, with inhibition rate of 36.5 %, was used as a positive control.

**Anti-HIV1 assays**: The cytotoxicity assay against C8166 cells (CC<sub>50</sub>) was assessed using the MTT method and anti-HIV-1 activity was evaluated by the inhibition assay for the cytopathic effects of HIV-1 (EC<sub>50</sub>)<sup>13</sup>.

**Cordifoliketone C** (1): It is obtained as pale yellow gum; UV (MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ) 362 (3.21), 276 (3.48), 242 (3.05), 210 (4.01) nm; IR (KBr,  $v_{max}$ , cm<sup>-1</sup>): 3422, 2929, 1655, 1600, 1512, 1451, 1354, 1222, 1155, 1001, 769, 684; <sup>1</sup>H and <sup>13</sup>C NMR data (C<sub>5</sub>D<sub>5</sub>N, 500 and 125 MHz, respectively) (Table-1); positive ESIMS *m/z* 359 [M+Na]<sup>+</sup>; HRESIMS *m/z* 359.0890 [M+Na]<sup>+</sup> (calcd. 359.0895 for C<sub>20</sub>H<sub>16</sub>NaO<sub>5</sub>).

#### **RESULTS AND DISCUSSION**

A 70 % aq. methanol extract prepared from the root of *C. cordifolioidea* was subjected repeatedly to column chromatography on Si gel, Sephadex LH-20, RP-18 and Preparative HPLC to afford compounds **1-4**, including one new furanoflavone, named cordifoliketone C(1), together with three known furanoflavone, 3,6-dimethoxy-2',2'-dimethyl-chromene-(3',4':7,8)-flavone (**2**)<sup>7</sup>, furano(2'',3'',7,6)-4'- hydroxyflavanone (1) (**3**)<sup>8</sup>, hedysarimcoumestans B (**4**)<sup>9</sup>. The structures of the compounds **1-4** were as shown in Fig. 1.

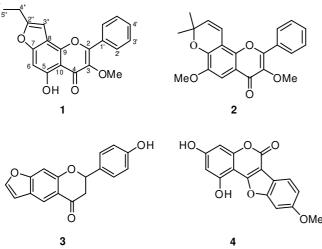



Fig. 1. Furanoflavones from the roots of C. cordifolioidea

Compound 1 was isolated as a pale yellow gam. Its IR spectrum exhibited absorption bands at 3422 (hydroxyl), 1655 (carbonyl) and 1600 cm<sup>-1</sup> (benzene ring) compatible with a flavonoid skeleton. Its HRESIMS spectrum, in the positive mode, revealed a peak at m/z 359.0890 [M+Na]<sup>+</sup> indicating the molecular formula of C<sub>20</sub>H<sub>16</sub>O<sub>5</sub>, corresponding to 14 ° of unsaturation. The  ${}^{1}\!H$  NMR spectrum showed a signal at  $\delta_{H}$ 12.60 (s) for a chelated hydroxyl group, two multiplets at  $\delta_{\rm H}$ 8.08 (m, H-2'/H-6') and 7.52 (m, H-3'/H-4'/H-5') appropriate for a monosubstituted benzene ring, two singlets at  $\delta_{\rm H}$  6.85 (s, H-6) and 6.42 (s, H-3") and a signal for one methoxyl group at  $\delta_{\rm H}$  3.86 (s, 3-OMe). In addition, the <sup>1</sup>H NMR spectrum showed characteristic signals for an ethyl moiety at  $\delta_{\rm H}$  2.52 (q, H-4") and 1.32 (t, H-5"). Apart from the signals typical of a flavonoidic skeleton, the <sup>13</sup>C NMR spectrum of 1 showed the signals at  $\delta_{\rm C}$  21.9 (C-4") and 13.2 (C-5"), which were inferred to the ethyl moiety already suggested by the <sup>1</sup>H NMR data. The signals at  $\delta_C$  157.4 (C-2") and 98.4 (C-3"), were associated with a furan ring while a signal at  $\delta_{\text{C}}$  60.8 with the methoxyl group located on C ring. The NMR spectral data (Table-1) of compound 1 combined with the molecular formula suggested a methoxy-furaneflavone.

| TABLE-1 <sup>1</sup> H NMR AND <sup>13</sup> C NMR DATA (IN C <sub>5</sub> D <sub>5</sub> N) OF COMPOUND 1 |                         |                                |
|------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|
| No.                                                                                                        | $\delta_{\rm C}$ (mult) | $\delta_{\rm H}$ (mult, J, Hz) |
| 2                                                                                                          | 154.8 s                 |                                |
| 3                                                                                                          | 141.3 s                 |                                |
| 4                                                                                                          | 179.2 s                 |                                |
| 5                                                                                                          | 161.5 s                 |                                |
| 6                                                                                                          | 97.6 d                  | 6.85 s                         |
| 7                                                                                                          | 158.2 s                 |                                |
| 8                                                                                                          | 112.3 s                 |                                |
| 9                                                                                                          | 148.4 s                 |                                |
| 10                                                                                                         | 109.5 s                 |                                |
| 1'                                                                                                         | 130.2 s                 |                                |
| 2′                                                                                                         | 128.0 d                 | 8.08 m                         |
| 3'                                                                                                         | 129.3 d                 | 7.52 m                         |
| 4′                                                                                                         | 131.5 s                 | 7.52 m                         |
| 5'                                                                                                         | 129.3 d                 | 7.52 m                         |
| 6′                                                                                                         | 128.0 d                 | 8.08 m                         |
| 2‴                                                                                                         | 157.4 s                 |                                |
| 3‴                                                                                                         | 98.4 d                  | 6.42 s                         |
| 4‴                                                                                                         | 21.9 t                  | 2.52 q                         |
| 5‴                                                                                                         | 13.2 q                  | 1.32 t                         |
| 3-OMe                                                                                                      | 60.8 q                  | 3.86 s                         |
| 5-OH                                                                                                       |                         | 12.60 s                        |

In the HMBC spectrum (Fig. 2), the correlations of the hydrogens at  $\delta_{\rm H}$  6.42 (H-3"), 1.32 (H-5") and 2.52 (H-4") with the carbon at  $\delta_{\rm C}$  157.4 (C-2") were in agreement with the presence of the ethyl moiety at C-2", while the long range correlation between the proton signal at  $\delta_{\rm H}$  6.42 (H-3") with the carbon at  $\delta_{\rm C}$  148.4 (C-9) confirmed the location of the furan ring at the C-7/C-8 position. In order to attend to the feature of a monosubstituted ring B in the structure of 1, the methoxyl group was located in the C ring at the C-3 position in accordance with the carbon chemical shift at  $\delta_{\rm C}$  141.3 (C-3) and the correlation between the signal at  $\delta_{\rm H}$  3.86 (-OMe) with that carbon. Based on all spectroscopic evidences, the

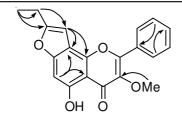



Fig. 2. Selected HMBC ( $\frown$ ) of compound 1

structure of **1** was established as the 5-hydroxy-2"-ethyl-3methoxyfurane-(2", 3": 7, 8)-flavone and given the trivial name of cordifoliketone C.

Since some of the furanoflavones exhibited anti virus activities<sup>10,11</sup>, compounds **1-4** were tested for the anti-TMV activity using the half-leaf method<sup>12</sup> and anti-HIV activity according to literature<sup>13</sup>.

In anti-TMV activity test, the antiviral inhibition rates of the compounds at the concentration of 20  $\mu$ M were tested by the half-leaf method. The results showed that the compound **1-4** exhibited inhibition rates of 25.4, 8.26, 11.8 and 6.35 %, respectively. The results revealed that compound **1** exhibited modest anti-TMV activity; its inhibition rate is close to that of positive control.

In anti-HIV1 activity test, the cytotoxicity assay against C8166 cells (CC<sup>50</sup>) and anti-HIV-1 activity was evaluated by the inhibition assay for the cytopathic effects of HIV-1 (EC<sub>50</sub>), using azidothymidine (AZT) as a positive control (EC<sub>50</sub> = 0.034 mg/mL and CC<sub>50</sub> > 200 µg/mL)<sup>22</sup>. Compound 1-4 showed modest anti-HIV-1 activities with EC<sub>50</sub> values of 11.86, 2.47, 9.22, 13.50 µg/mL, respectively and the all exerted minimal cytotoxicity against C8166 cells (CC<sub>50</sub> > 200 µg/mL). The

therapeutic index (TI) values ( $CC_{50}/EC_{50}$ ) of **1-4** was more than 16.86, 80.97, 21.69, 14.81, respectively.

### ACKNOWLEDGEMENTS

This project was supported financially by the Excellent Scientific and Technological Team of Yunnan (2009CI014) and the Excellent Scientific and Technological Team of Yunnan High School (2010CI08).

#### REFERENCES

- D.Y. Hong, Y.S. Lian and L.D. Shen, Flora of China, Science Press, Beijing, Vol. 73, p. 32 (1983).
- Yunnan Corporation of Materia Medica, List of Chinese Herb Medicine Resources in Yunnan, Science Publishing, p. 544 (1993).
- Q.F. Duang, H. Zhao and Y.Q. Wang, *Chin. J. Yunnan. Med.*, **12**, 39 (2003).
- Z.J. Chen, Q.H. Wei and J.Y. Zhou, *Yunnan. J. Tradit. Chin. Med. Mater.*, 27, 49 (2006).
- R.Q. Mei, Q. Lu, Y.F. Hu, H.Y. Liu, F.K. Bao, Y. Zhang and Y.X. Cheng, *Helv. Chim. Acta*, **91**, 90 (2008).
- R.Q. Mei, Q. Lu, Y.F. Hu and Y.X. Cheng, *Chin. J. Nat. Prod. Res.* Develop., 22, 238 (2010).
- 7. A.M.C. Arriaga, G.A. Gomes and R. Braz-Filho, *Fitoterapia*, **71**, 211 (2000).
- 8. H. Liu, Y.J. Bai, Y.Y. Chen and Y.Y. Zhao, *China. J. Mat. Med.*, **32**, 1410 (2008).
- 9. W. Wang, Y.Y. Zhao and H. Liang, J. Nat. Prod., 69, 876 (2006).
- F. Epifano, S. Genovese, L. Menghini and M. Curini, *Phytochemistry*, 68, 939 (2007).
- 11. K. Hassan, T. Mahmud and A. Ather, Biotech. Ann. Rev., 13, 223 (2007).
- X.H. Yan, J. Chen, Y.T. Di, X. Fang, J.H. Dong, P. Sang, Y.H. Wang, H.P. He, Z.K. Zhang and X.J. Hao, *J. Agric. Food. Chem.*, 58, 1572 (2010).
- 13. P.L. Darke and J.R. Huff, Adv. Pharmacol., 25, 399 (1994).