
INTRODUCTION

The primary goal of the drug discovery and development

process is to find a molecule with both good pharmacodynamic

and good pharmacokinetic properties. Ideally, a new drug

should be efficacious and selective, target-tissue(s)-specific

and orally-absorbed, cause minimal or no adverse effects due

to metabolite activity or toxicity and be distributed / excreted

in such a fashion as to permit dosage once a day. However,

sub-optimal absorption, distribution, metabolism and excretion

pharmacokinetic properties are the major reason for the high

attrition rates of compounds in development, where more than

90 % of all candidates fail1. Similarly, toxicity play a conside-

rable part role in candidates' failure.This problem has persisted

due to difficulties in obtaining data on pharmacokinetic prop-

erties (ADME/T) early in drug discovery. Therefore, the ideal

situation for the medicinal chemist is that the pharmacokinetic

properties of a compound can be predicted on its physico-

chemical properties. Traditional methods in vivo and in vitro

have been developed in order to predict pharmacokinetic

properties. A drawback for most of these methods is that they

are time consuming and have a limited throughput.
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The knowledge of drug potential toxicity is great need for risk assessment and screening candidates of drugs in the drugs development.

The use of biopartitioning micellar chromatography has proven to be valid in predicting several biological activities of different kinds of

drugs in development new drugs. The use of quantitative retention-activity relationship/quantitative structure-activity relationship basing

on biopartitioning micellar chromatography to estimate acute toxicity is an attractive alternative to experimental measurements. In this

paper, a data set of 58 chemical drugs from various structure classes with median lethal dose (LD50) data available expressed as pLD50 in

this paper was studied to construct acute toxicity model. The pLD50 was reciprocally correlated to the negative value of the capacity factor

(-1/k). The correlation was better with the addition of molecular descriptors (R2 = 0.823). The method of quantitative retention-activity

relationship/quantitative structure-activity relationship developed by construction model of chemical drugs was applied to predict toxicity

of bioactive ingredients of traditional chinese medicines. The results showed that application was predictable and practical in bioactive

ingredients of traditional Chinese medicines.
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Most drugs are qualified but toxicity is barrier to go on to

the market. Drugs in vivo must be transported across the

biomembranes and then arrive at the site of action where it

must accumulate certain concentration to produce biological

response. It is known to all, when drugs are administered

beyond effective dose, high bioconcertation of the drug in the

action site can attribute to the acute toxicity to the tissues

or organs because of easy transmembrane diffusion which

usually lead to drug accumulate in the action site. Therefore,

toxicity production processes of drug action are also considered

to have much in common with the processes on which chroma-

tographic separations are based. The molecular features

(hydrophobicity, electrical charge and steric effects, degree of

ionization, molecular shape, size, etc.) affect not only transport

processes and drug-biological target interactions, but also the

drug retention in a chromatographic system under specific

experimental conditions.

Chromatographic models are universally used in this aspect

due to experimental simplicity, low cost, accuracy and high

throughput, among which the immobilized artificial membrane,

immobilized-liposome chromatography, biopartitioning
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micellar chromatography system are well recognized models.

Biopartitioning micellar chromatography is a chromatographic

modality optimized in order to describe the biological behaviour

of drugs, which usually is comprised of a C18 reversed stationary

phase and polyoxyethylene (23) lauryl ether (Brij35) mobile

phase. It has been testified to be useful to predict HOA2,3, rapid

toxicity prediction of organic chemicals to Chlorella vulgaris,

chemical toxicity4, ecotoxicity5 bioconcentration of pesticides

in fish6 and skin permeability7,8.

The success of QRAR models based on biopartitioning

micellar chromatography could be attributed to the similarities

among biopartitioning micellar chromatography systems,

biological barriers and extracellular fluids. This methodology

has been applied for describing and predicting the biological

activity of different pharmacological kinds of drugs, namely

QSAR model when structure features are introduced. QSAR

models describe a mathematical relationship between the

structural features of a set of chemicals and the particular

activity associated with them9. QRAR and QSAR models

developed separately by biopartitioning micellar chromato-

graphy were studied more in screening bioactivity chemical

drugs in drug development. QRAR was used to study on oral

drug absorption and biological activity10, HMG-CoA reductase

inhibitors11, quinolones12, cephalosporins13, angiotens inconverting

enzyme inhibitors14, angiotensin enzyme inhibitors15, alkaloids

by mixed micellar liquid16, dihydropyridine selective calcium

channel antagonist toxicity17, quantitative retention-structure

and retention-activity relationships of barbiturates18 and local

anesthetics19; QSAR studied on para-substituted aromatic

sulfonamides as carbonic anhydrase II inhibitors using topolo-

gical information indices20, acute chemical toxicity for aquatic

environment21 etc. Moreover, the bioactive ingredients of

traditional Chinese medicines have much common in retention

behaviour on biopartitioning micellar chromatography column

for their physical nature and toxicity mechanisms are analogous

with chemical drugs. So prediction toxicity of traditional

Chinese medicines can be studied by constructing QRAR and

QSAR models using biopartitioning micellar chromatography.

But when biopartitioning micellar chromatography is used

to predict toxicity of bioactive ingredients of traditional Chinese

medicines, the retention may not be obtained accurately

because of interference of other ineffective and unknown com-

ponents. Therefore, in this paper, parts of monomers of

bioactive ingredients of traditional Chinese medicines with

available literatures about their LD50 were just preliminarily

studied. Firstly, we constructed toxicity prediction QRAR/

QSAR model of chemical drugs which was introduced to

capacity factor (k) and molecular structure descriptors (describe

molecular structure mathematically) of 58 selected chemical

drugs basing on previously studied QRAR and QSAR models.

Finally, application toxicity prediction model of chemical

drugs on prediction toxicity monomers of bioactive ingredients

of traditional Chinese medicines and then comparison predicted

value with literatures reported value of their LD50 were conducted.

EXPERIMENTAL

The mobile phase consisted of 0.04 mol/L polyoxy-

ethylene (23) lauryl ether (Brij35, Acros, NJ, USA)) with 0.01

mol/L sodium dihydrogen phosphate (analytical-reagent grade,

Kelong, Chengdu, China) and was adjusted to pH 7.4 which

is the plasmatic pH value by sodium hydroxide. In order to

reproduce the osmotic pressure of biological fluids, sodium

chloride (9.20 g/L, analytical-reagent grade, Kelong, Chengdu,

China) was added to the micellar mobile phase. Sodium chloride

concentration was close to physiological concentration of biolo-

gical fluids. Water was from a Millipore (Billerica, MA, USA)

synergyTM 185 system and was degassed before HPLC. The

mobile phases injected into the chromatograph were filtered

through 0.45 µm micro porous membrane.

Among the 58 chemical drugs, piroxicam, isoniazid,

caffeine, meloxicam, furosemide, pindolol were used as control

articles provided by analysis test center of West China School

of Pharmacy and the others were crude drug or formulations

which would not affect their retention behaviour in this study

because of the dilution of the mobile phase, donated by the

pharmaceutical and pharmaceutical chemistry laboratories of

West China School of Pharmacy, Sichuan University (Chengdu,

China). Reference substances of traditional Chinese medicines

including chlorogenic acid, caffeic acid, cinnamic acid, rhein,

aconitine, hypaconitine and sinomenine which were purchased

from national institute for the control of pharmaceutical and

biological products.

Water-soluble drugs were dissolved in mobile phase

solution. Lipophilic drugs were first dissolved in methanol

(analytical-reagent grade, Kelong, Chengdu, China) and then

were diluted with water to get appropriate concentration. Stock

standard solutions of reference substance and crude drug of

analytes were prepared by dissolving 10 mg of the compound

in 10 mL volumetric flask. Working solutions were prepared

by dilution of the stock standard ones using the Brij35 solution.

For those pharmaceutical preparations of analytes, working

solutions were prepared by dissolving 10 mg of the tablet or

capsule powders of the drugs in 10 mL volumetric flask, then

centrifuged at 1000 × g for 5 min. The working solutions

injected into the chromatograph were filtered through 0.45

µm microporous membranes (Xinya, Shanghai, China),

respectively. All the solutions were stored under refrigeration

at 4 ºC before analysis.

Instrumental and measurement: The retention of drugs

was measured using an LC-6A chromatograph with an LC-

6A pump, an SPD-6AV UV-visible detector and a CTO-6A

column thermostat (Shimadzu, Japan). Data were collected

and processed on a Compaq computer installed with HP-

Chemstation software (A0402, 1996). The solutions were

injected into the chromatograph through a Rheodyne valve

(Cotati, CA, USA), with a 20 µL loop. The HPLC column was

a Kromasil C18 column (5 µm, 150 × 4.6 mm i.d.) with a

phenomenex security Guard TMC18 guard cartridge. The mobile

phase flow rate was1.0 mL/min. The UV detection of chemical

drugs was monitored at 220, 254, 270 and 300 nm and the

detection wavelength of bioactive ingredients of traditional

Chinese medicines was set at 270, 280 and 240.

All the assays were carried out at 37 ºC for simulating

human body temperature. The retention data in biopartitioning

micellar chromatography were calculated as capacity factors,

k = (tr -t0)/t0, where tr is the retention time of the test compound

and t0 is the column dead time, which is the first fluctuation of

baseline, determined by injecting water. The k values used in

1526  Liang et al. Asian J. Chem.



this study were the average value of triplicate. The retention

data were highly reproducible.

Statistical analysis: The data set was analyzed using

Microsoft® Excel 2003 (Microsoft Corporation). MLR was

used to carry out on the date set using SPSS 12.0 software

(the SPSS for windows version 12.0, SPSS Inc. Chicago, USA).

Stepwise regression analysis which is one of the MLR methods

was used to determine the most significant descriptors. Mole-

cular descriptors were calculated by Discovery Studio 2.5

(Accelrys Software Inc., San Diego, CA, USA). ChemDraw®

Ultra 8.0.3 (Cambridgesoft corporation, USA)was used. For

each regression, the following requirements of significant

regression analysis were observed: n, R2, SE, F and p, in which

n is the number of points used in the regression, R2 is the square

of the overall correlation coefficient, SE is the standard deviation

and F is Fischer's F-statistic, which are used to control fit ability

and statistics significance of regression mode. T test is used to

prove that partial regression coefficient before each variable

is meaningful or not in MLR equation. VIF is determined the

multicollinearities among the descriptors. VIF was calculated

for each descriptor in the model as 1/(1- r2), where r is a multiple

correlation coefficient. Multicollinearities were considered to

exist when the VIF was greater than 10 and the model was

considered to reconstruct. In addition, root mean squared error

of calibration (RMSEC) was estimated predictive ability of

the QRAR/QSAR model.

RMSEC = 
( )

n

YiYi
n

1i

2

∑
=

−

where, Yi  is the predicted activity when all the n molecules

are included in the model construction.

RESULTS AND DISCUSSION

Development of QRAR/QSAR method by biopartitioning

micellar chromatography: As mentioned above, the molecular

structure features of drugs determine not only their toxicity

but also the biopartitioning micellar chromatography retention.

Therefore, retention-toxicity relationship and structure-toxicity

relationship could be expected. Accordingly, in this paper, the

first step in current study was to calculate bulk properties and

molecular descriptors (Table-1) of the selected chemical drugs

which were passively absorbed in intestinal wall and to measure

the retention (capacity factor k) of each drug on the bioparti-

tioning micellar chromatography column as an indicator for

the drug partitioning into cell membrane. The next step was to

correlate calculated descriptors and experimentally measured

capacity factor against pLD50. Since an equation containing

an excessive number of independent variables can be too

cumbersome to use and is likely to be overparameterized, we

utilized stepwise regression to refine the model and to select

most important descriptors to generate regression equation.

The sample set including 58 different chemical drugs with

LD50 date (expresses as pLD50) available was random divided

into training set including 46 chemical drugs which was used

to build model and test set 12 chemical drugs which was used

to evaluate predictability of model. Table-1 shows the specific

compounds, molecular descriptors, experimental pLD50 and

predicted pLD50 calculated by eqn. (1).

Through the MLR method preformed for the training

set, the better linear equation with four parameters is listed as

follows:

pLD50 = -3.022 (± 0.419) - 0.22 (± 0.052)1/kBMC - 0.012

(± 0.002) Molecular polar surface area + 0.005 (± 0.002)

Absolute energy + 0.748 (± 0.316)IAC_Mean

N = 48; R2 = 0.823; R2 adj = 0.806; SE = 0.29;

F = 49.83; P < 0.001 (1)

In the eqn. (1), pLD50 was reciprocally correlated the

negative value of the biopartitioning micellar chromatography

capacity factor (-1/k). Lipophilicity is one of the vital para-

meters commonly used to predict membrane permeability22,23

and is approximately correlated to passive transport across

cell membranes and the ability of a compound to partition a

membrane24, indicating by retention value measured by

biopartitioning micellar chromatography. The large value of

k reveal, the strong permeability, which suggest, high concen-

tration of drug in action site accumulates easily and accompany

with toxicity effect. The lipophilicity by itself is inadequate

for the estimation of the solute's ability to penetrate a membrane

barrier. Therefore, both hydrophobic effects and hydrogen

bonding forces must be considered rather than just lipophilicity.

PSA is a surface descriptor, defined as the part of the surface

area of a molecule contributed by nitrogen, oxygen and connec-

ted hydrogen atoms. This descriptor can be loosely related to

hydrogen-bonding capability25. Formation of hydrogen bonds

could be linked with the toxic effect in some cases, as it facilitates

the creation of the intermolecular interactions between the

compound and the biological structure, but the negative contri-

bution in eqn. (1) suggests that more likely here is that it

characterizes the ability of a drug to penetrate through the

biomembranes to/within the living organism. A higher value

of this descriptor indicates lower penetration to cell membranes

and small toxicity of a compound. Absolute energy is quantum

chemical descriptors, which has large value suggesting that

drug toxicity is relative high because molecule is easy to gain

and lose electrons and consequently leading to high bioactivities.

IAC_Mean which is one of topological structure descriptors

is an average information index of atoms composed of mole-

cule. It represents information of molecular shape and mole-

cular size. In the regression equation, IAC_Mean is proportional

to pLD50 but is against to toxicity. That is large value IAC_

Mean indicting low toxicity.

As can be observed, the p-value obtained for toxicity model

was less than five, which indicated that the relationships

between these parameters and the pLD50 were statistically

significant at the 95 % confidence level. The coefficients obtained

for this model was also significant at the same confidence level.

The standard error for the toxicity model can be used to

construct prediction limits for new observations. The QRAR/

QSAR model obtained by biopartitioning micellar chroma-

tography was adequate to predict the toxicity of chemical drugs

(R2 = 0.823).

When multiple linear regression was used to construct

model, each variable should perform t test. From the Table-3

listed, t value of each variable was large than the standard

value of t (ta/2 = 2.018) for this model at 95 % confidence level.

VIF calculated for each variable in this model was less than 5,
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TABLE-1 
MOLECULAR DESCRIPTORS, EXPERIMENTAL AND PREDICTED pLD50 AND RESIDUAL  

VALUES (EXPERIMENTAL pLD50 -PREDICTED pLD50) OF CHEMICAL DRUGS 

NO Compound 1/kBMC MPSAa AEb IAcMc pLD50
[d,e] Exp pLD50

f 
Pre RVg 

Training set         

1 Amoxapine 0.03 36.85 82.67 1.61 -2.02 -1.85 -0.17 

2 Amoxicillin 3.7 158.25 25.74 1.8 -4.4 -4.27 -0.13 

3 Amrinone 0.24 68.01 25.45 1.63 -2.46 -2.55 0.09 

4 AmLodipine 0.05 19.88 75.59 1.65 -1.57 -1.66 0.09 

5 Orphenadrine 0.02 12.47 33.52 1.26 -2 -2.07 0.07 

6 Alprenolol 0.05 41.49 26.28 1.34 -2.26 -2.4 0.14 

7 Atenolol 1.96 84.57 28.16 1.5 -3.3 -3.21 -0.09 

8 Atropine 0.24 49.77 32.93 1.41 -1.88 -2.45 0.57 

9 Aciclovir 2.7 114.76 29.85 1.85 -4 -3.47 -0.53 

10 Phenylbutazone 0.1 40.62 51.6 1.45 -2.38 -2.19 -0.19 

11 Phenobarbital 0.08 75.26 28.97 1.66 -2.3 -2.56 0.26 

12 Phenytoin sodium  0.05 58.19 48.36 1.55 -2.22 -2.33 0.11 

13 Allopurinol 0.85 74.68 73.4 1.84 -2.25 -2.36 0.11 

14 Piroxicam 0.12 107.98 59.17 1.85 -2.4 -2.66 0.26 

15 Imipramine 0.02 60.48 54.31 1.21 -2.27 -2.58 0.31 

16 Diazepam 0.03 32.67 54.93 1.59 -1.68 -1.96 0.28 

17 Paracetamol 0.26 49.32 24.24 1.6 -2.53 -2.35 -0.18 

18 Felodipine 0.06 64.62 41.62 1.69 -2.4 -2.34 -0.06 

19 Haloperidol 0.02 40.53 36.78 1.57 -1.85 -2.15 0.3 

20 Furosemide 0.14 131 32.62 2.04 -3.2 -2.94 -0.26 

21 Mannitol 4.76 121.38 14.9 1.46 -4.34 -4.37 0.03 

22 Ganciclovir 2.56 134.99 34.26 1.85 -3.3 -3.66 0.36 

23 Trimethoprim 0.17 105.51 59.19 1.67 -2.8 -2.78 -0.02 

24 Caffeine 0.47 58.44 27.68 1.78 -2.1 -2.36 0.26 

25 Lamotrigine 0.08 90.7 52.27 1.84 -2.39 -2.49 0.1 

26 Ranitidine 1.41 127.6 47.94 1.73 -2.94 -3.33 0.39 

27 Ribavirin 3.57 143.71 29.53 1.87 -3.6 -4 0.4 

28 Lidocaine 0.08 32.34 33.35 1.35 -2.34 -2.25 -0.09 

29 Chlordiazepoxide 0.03 36.75 54.42 1.5 -2.3 -2.08 -0.22 

30 Minoxidil 0.92 81.06 28.57 1.45 -3 -2.97 -0.03 

31 Primidone 0.14 58.19 26.35 1.56 -2.45 -2.45 0 

32 Tramadol 0.14 32.7 40.94 1.32 -2.43 -2.25 -0.18 

33 Diclofenac 0.07 49.32 46.76 1.73 -1.98 -2.1 0.12 

34 Diclofenac 0.02 75.26 20.05 1.56 -2.23 -2.66 0.43 

35 Bromperidol 0.02 40.53 36.8 1.57 -2.24 -2.15 -0.09 

36 Pindolol 0.29 57.28 94.15 1.47 -2.37 -2.2 -0.17 

37 Indometacin 0.07 28.53 122.58 1.63 -1.07 -1.55 0.48 

38 Terbutaline 1.53 72.71 24.97 1.46 -2.31 -3.02 0.71 

39 Clobazam 0.04 60.01 64.04 1.67 -2.76 -2.18 -0.58 

40 Oxprenolol 0.13 50.71 34.84 1.41 -2.72 -2.43 -0.29 

41 Hexobarbital 0.05 69.96 25.86 1.6 -2.67 -2.55 -0.12 

42 Urapidil 0.2 68.35 49.41 1.56 -2.71 -2.47 -0.24 

43 Warfarin sodium 0.11 63.6 37.95 1.37 -2.57 -2.6 0.03 

44 Aspirin 2.78 63.6 26.01 1.51 -3.4 -3.15 -0.25 

45 Soniazid 1.52 68 20.45 1.74 -2.72 -2.77 0.05 

46 Fluphenazine 1.79 55.25 60.81 1.46 -2.34 -2.69 0.35 

47 Nadolol 1.69 81.95 39.3 1.41 -3.58 -3.13 -0.45 

48 Benazepril 0.12 78.87 49.97 1.45 -2.8 -2.66 -0.14 

Test set         

1 Aminophenazone 0.31 39.78 48.95 1.489 -2.54 -2.21 -0.33 

2 Metformin 2.78 75.99 46.05 1.439 -3.16 -3.25 0.09 

3 Digoxin 0.13 53.82 100.33 1.993 -1.25 -1.7 0.45 

4 Theophylline 0.63 69.29 27.7 1.837 -2.37 -2.48 0.11 

5 Ketoprofen 0.17 54.37 39.21 1.346 -2.56 -2.51 -0.05 

6 Propranolol 0.23 41.49 33.04 1.366 -2.51 -2.38 -0.13 

7 Naproxen 0.14 46.53 34.69 1.362 -2.56 -2.42 -0.14 

8 Procaine 0.26 58.35 25.2 1.43 -2.72 -2.58 -0.14 

9 Tetracycline 0.11 81.61 64.2 1.626 -2.83 -2.49 -0.34 

10 Cimetidine 0.33 114.18 61.07 1.628 -3.41 -2.94 -0.47 
aMPSA: Molecular polar surface area; bAE: Absolute energy; cIAcM: IAC_Mean; dpLD50 Exp : Experimental pLD50 (- logLD50); 
epLD50

 
Pre : Predicted pLD50 (- logLD50); 

fhttp://www.drugfuture.com; gRV: Residual value (experimental pLD50-predicted pLD50). 
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TABLE-2 
VIF VALUE, T VALUE OF THE DESCRIPTORS IN THE MODEL 

Variables 1/kBMC 
Molecular polar 

surface area 
Absolute 
energy 

IAC_mean 

VIF 1.995 3.042 1.228 1.790 

t 4.301 5.305 -2.432 -2.365 

 
suggesting that the model was robust because multicollinearities

did not exist among variables.

In order to evaluate the predictive ability of this model in

terms of RMSEC and residuals value (Table-1) were obtained.

Applying equation 1 to predict pLD50 of the training set and

test set, respectively. Figs. 1and 2 show the activities of predic-

ted values vs. experimental values of training set and test set,

respectively. As can be observed, the better correlation was

obtained (training set, R2 = 0.8176; test set, R2 = 0.8046). Fig.

3 shows the corresponding residual plots. There was a random

distribution of the residuals and practically they all were statis-

tically small except several drugs due to other factors such as

steric force and electrostatic effect may affect the accuracy

prediction, which suggests, from a qualitative point of view,

the adequacy of the model to data. At the same time, fit error

of the model for the chemical drugs (training set, RMSEC =

7.76; test set, RMSEC = 5.06) were relative low which suggested

the better predictive ability was obtained and application in

predicting toxicity of traditional Chinese medicine was practical.

Fig. 1. Predicted value calculated by equation (1) vs. experimental value

of training set of chemical drugs

Fig. 2. Predicted value calculated by equation (1) vs. experimental value

of test set of chemical drugs

Fig. 3. The residual values [experimental OA (%)-predicted (%)] of all

chemical drugs

Application QRAR/QSAR methods developed to predict

toxicity of bioactive ingredients of traditional Chinese

medicines by biopartitioning micellar chromatography:

Applied toxicity prediction model of chemical drugs to predict

toxicity of bioactive ingredients of traditional Chinese medicines.

Table-3 shows the molecular descriptors of bioactive ingredients

of traditional Chinese medicines, experimental pLD50 value

and predicted pLD50 value.

Accurate LD50 values about bioactive ingredients of

traditional Chinese medicines were not obtained, because

researches about LD50 of bioactive ingredients of traditional

Chinese medicines have not been studied. Table-3 showed the

predicted values of pLD50 about bioactive ingredients of

traditional Chinese medicines were relatively close to literature

reported value except aconitine and hypaconitine. Many un-

certain reasons contribute to the differences between predicted

value and experimental value of aconitine and hypaconitine.

One reason is the experimental conditions such as drug dose,

time of administration, individual variance of subject, etc.

Another possible reason is that predicted value was predicted

by model of constructed chemical drugs. We hypothesized that

the molecular descriptors of monomer of traditional Chinese

medicines were same with chemical drug's in description toxic

property. But structure descriptors of chemical drugs in toxicity

aspect may not impact significantly on traditional Chinese

medicines. As a result, existence of prediction error is inevitable.

Conclusion

In this study, prediction toxicity of diverse structural drugs

was investigated by biopartitioning micellar chromatography

technique. When the molecular structure descriptors were

introduced, better correlation with toxicity (expressed as

pLD50) was obtained. Meanwhile, constructed model processes

certain fit ability and statistics significance after statistics

analysis. It is practical to apply this toxicity prediction model

TABLE-3 
MOLECULAR DESCRIPTORS VALUES, THE EXPERIMENTAL pLD50, PREDICTED  

pLD50 OF MONOMERS OF ACTIVE INGREDIENTS OF TCMs 

Compound 1/kBMC MPSAa AEb IACMc pLD50
 d Exp pLD50

e 
Pre 

Ferulaic acid 0.21 106.76 23.48 1.483 -3.51[26] -3.12 

Hypaconitine 0.1 105.21 56.95 3.055 -0.76[27] -1.74 

Rhein 0.07 111.9 129.61 3.475 -0.70 -1.13 

Tuduranine 0.65 109 94.16 1.453 -2.76[28] -2.92 

Cnnamic acid 0.16 137.29 31.59 1.378 -3.70[29] -3.52 

Aaconitine 0.08 109.51 157.19 3.469 -0.00[27] -0.97 
aMPSA: Molecular polar surface area; bAE: Absolute energy; cIAcM: IAC_mean; dpLD50 Exp : Experimental pLD50 (- logLD50); 

epLD50
 
Pre : Predicted 

pLD50 (- logLD50) 
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of chemical drugs to predict toxicity of monomers of bioactive

ingredients of traditional Chinese medicines because of

robustness and reliability of this model.

It is known that the traditional Chinese medicines are

complex mixtures containing many kinds of ingredients, effects

on body are usually produced by these ingredients interaction

with each other, few of which are responsible for their pharma-

ceutical and/or toxic effects. However, the screening and analysis

of active/or safety ingredients in traditional Chinese medicines

is very important not only for the quality control of crude drugs

but also for elucidating the therapeutic principle of traditional

Chinese medicines. In traditional, screening of toxicity ingre-

dients is carried out on animals' models, which are time-con-

suming, arduous and inappropriate for directly discriminate

toxic ingredients from traditional Chinese medicines. The

method of construction of QSAR and QRAR models can be

applied to discriminate toxicity drugs and predict toxicity degree

according to retention on chromatography and calculate mole-

cular descriptors for description molecular structure feature

in toxicity through the mathematical statistics methods, such

as multiple linear regression (MLR), principal component

regression (PCA) and artificial neural network(ANN) etc.

Up to now, with the growth of computational chemistry,

molecular structure and active relationships can be quantitative

studied. And toxicity of active ingredients for certain species

of traditional Chinese medicines can be tried to directly predict

by construction QSAR model. In addition, retention of all kinds

of monomers of active ingredients of traditional Chinese medi-

cines on chromatography and correletionships with physico-

chemical properties such as partition coefficients (P) in the

biphasic octanol-water solvent will be further studied in order

to predict toxicity of traditional Chinese medicine compound

preparation, hypothesizing that certain links between them can

be find by construction mathematical models. Refinement

and improvement of the predictive model is possible with the

evaluation of different aspects of molecular descriptors and

construction large date set as well as possible basing on avail-

able date of toxicity for traditional Chinese medicines.
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