
INTRODUCTION

Tyrosinase or polyphenol oxidase is a copper enzyme

widely distributed throughout the phylogenetic scale. It

catalyses the hydroxylation of monophenol to o-diphenols and

their subsequent oxidation to o-quinones, in both cases by

molecular oxygen1,2. The kinetic behaviour of tyrosinase is

very complex due to the contemporaneous occurrence of the

enzymatic oxidation of monophenol and o-diphenol to o-quinone,

on the one hand and the coupled non-enzymatic reactions of

o-quinone, on the other3,4.

Chemometric methods like principal component analysis

and partial least squares regression have been used success-

fully in many applications over the years. The technique is

well established in many analytical fields, like UV/VIS, NIR,

IR spectroscopy5 gas and liquid chromatography6 and manu-

facturing processes7.

Much research has been performed on solving the mixture

analysis problem and extracting real spectra and concentration

profiles from overlapping spectral data without making any

prior assumptions about the composition of the system. Several

mixture analysis methods are known, like evolving factor

analysis8, fixed size moving window evolving factor analysis9,
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target factor analysis10, classical curve resolution11, weighted

curve resolution12, multivariate curve resolution13 and to a

certain extent also techniques like parallel factor analysis14.

Using these techniques, we can mathematically estimate the

evolution of the chemical contributions over time for a specific

experiment. The measured spectral information at different

wavelengths reveals the specific absorption and also the

morphologies of the compounds due to the scatter produced

when particles or solid biomass is present. However, the

resulting spectra are difficult to interpret and they lack speci-

ficity. This disadvantage can be solved using curve resolution

methods using the following three objectives of this study.

The first is resolve the number of chemical compounds and

intermediates simultaneously present in the mixture from a

complex spectral signature. The second identification of these

species by transforming mathematical solutions to real spectra

and increasing their specificity. The third to quantify each

component and transfer this information to a kinetic model

without any prior assumption or knowledge of the chemical

model involved. Thus, we demonstrate the possibilities and

power of this method to estimate and quantification of inter-

mediates during the cresolase reaction that mushroom tyrosinase
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is affected on p-coumaric acid at moderate temperatures at

pH 6.8. Resolving the UV/VIS spectra by multivariate curve

resolution yields concentration profiles for the kinetic process

without the need for any prior knowledge about the chemical

model. Alternating least square allows to extract the pure

spectra and concentration of the components in a mixture from

a set of spectra with different composition. Its application is

particularly useful to evaluate the kinetics of a chemical

process, allowing also to calculate the concentration profiles

of all the involved species. This information can be used to

study the mechanism of the reaction.

EXPERIMENTAL

Mushroom tyrosinase (MT: EC 1.14.18.1 ) were prepared

as previously described15. p-Hydroxycinnamic acid (p-coumaric

acid, λmax = 288 nm, ε = 19400 M-1 cm-1) was purchased from

from Merck™. All other reagents were homemade analytical

grade. The water used was re-distilled and ion-free. The buffer

used throughout this research was 10 mM phosphate buffer

solution, pH = 6.8 and the corresponding salts were obtained

from Merck. All the experiments were carried out at 20 ºC and

all solutions prepared in doubly distilled water. Freshly pre-

pared enzyme and substrate solutions were used in this work.

UV-VIS spectrophotometry: p-Coumaric acid in variable

concentrations is used in this study as a substrate model

compound for mushroom tyrosinase monophenolase reaction.

The kinetic assays of monophenolase activity were carried

out using cary spectrophotometer, 100 bio model, with jacketed

cell holders. As illustrated in Fig. 1 the UV-VIS spectra were

recorded in the wavelength range between 200 and 600 nm, at

the times 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and

17 min of the reaction time.

Theoretical background

Subspace comparison: Subspace comparison compares

two subspaces, each of which described by a set of orthonormal

vectors selected by a method suitable for variable selection

such as orthogonal projection approach16, simple-to-use

interactive self modeling mixture analysis17,18 and principal

component analysis19. Although the different methods select

different key variables, if correct number of variables has been

selected, the vectors selected by different methods span the

same subspace of the full row or column space of the matrix.

Suppose two subspaces are defined as A = {a1, a2,..., ak} and

B = {b1, b2,..., bk}, where K is the number of key variables or

factors selected by different variables selection methods and

is the same for both matrices. The vectors in A and B are

orthogonalized by the Schmidt procedure20. The next step is

to calculate tr(K) as:

tr(K) = Trace(ATBBTA)

where, tr(K) varies between 0 and K. Subspace discrepancy

function, D(K), is calculated as follows:

D(K) = K-tr(K)

D(K) is the measure of that part of the subspaces, which

is in orthogonal complement of the other. This becomes zero

when two subspaces are identical. Eigen values are calculated

on (ATB) matrix and are utilized as:

sin2(νk) = 1-gk

where, sin2(νk) is the largest principal angle between subspaces

that are selected by different variable selection methods and

represent the degree of agreement between variables for

determination of the number of chemical species and gk is the

eigen value. Shen et al.21 compared D(K) and sin2(νk) as a

measure of disagreement between the subspaces by plotting

both values for K components. The number of factors becomes

equal to the largest value of K with D(K), or sin2(νk) close to

zero.

Multivariate curve resolution-alternating least square

(MCR-ALS): Multivariate curve resolution-alternating least

square22 is a commonly used technique that can resolve multi-

component mixtures into a simple model consisting of a compo-

sition-weighted sum of the signals of the pure compounds. A

data matrix X of dimension M × N is considered, where M is

the number of spectra and N is the number of variables (e.g.,

wavelengths). The aim of any resolution method is the optimal

decomposition of a data matrix D into the product of two small

matrices C and S, which contain as much information as

possible about the pure component spectra and their concen-

trations, respectively.

D = CST + E

where, D(r × c) is the original data matrix, C(r × n) and ST(n×c)

are the matrices containing the pure response profiles related

to the data variation in the row direction and in the column

direction, respectively and E(r × c) is the error matrix, i.e. the

residual variation of the data set that is not related to any

chemical contribution. Parameters r and c are the number of

rows and the number of columns of the original data matrix,

respectively and n is the number of chemical components in

the mixture or process. C and ST often refer to concentration

profiles and spectra (hence their names), although resolution

methods are proven to work in many other diverse problems23,24.

From the early days in resolution research, the mathematical

decomposition of a single data matrix, no matter the method

used, is known to be subject to ambiguities25. This means that

many sets of paired C and ST-type matrices can reproduce the

original data set with the same fit quality. In plain words, the

correct reproduction of the original data matrix can be achieved

by using response profiles differing in shape (rotational

ambiguity) or in magnitude (intensity ambiguity) from the

sought (true) ones26.

Eqn. (1) assumes an additive linear model, which should

be valid for spectroscopic absorbance measurements when

Beer's law applies. D contains the original absorbance spectra,

very often as a function of time for a reaction process. C contains

columns with the concentrations of the compounds involved

in the data set, which are the kinetic profiles if the spectra

describe a kinetic reaction. The rows of S contain the spectra

for the compounds. E is the matrix of spectral residuals. Reso-

lution of the peaks by using multivariate curve resolution-

alternating least square for data matrix X consisted of the

following steps: (i) use of principal component analysis-based

methods such as evolving factor analysis27 or purity-based

methods such as subspace comparison28 to determine the

number of components; (ii) obtaining initial estimates of

concentration profiles of spectra by evolving factor analysis,

simple-to-use interactive self modeling mixture analysis and
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orthogonal projection approach; (iii) use of alternating least

squares on initial estimates to resolve the data matrix X into

the pure component spectra and their related individual concen-

tration profiles. The procedure starts by calculating the spectra

by using the least square:

S = (XTC)(CTC)-1

After this, a new set of concentration profiles (matrix C)

can be obtained by least squares and refined using constraints:

C = (XTS)(STS)-1

Possible constraints are unimodality of concentration

profiles non-negativity of the spectra and fixing a spectrum

that is known and available during the alternating least square

optimization process. Then sum of squares of the residuals,

SSR, can be calculated using the following equations:

R = X - CST

SSR = ∑∑
= =

m

1i

n

1j

2

ijr

where, rij is the element of residual matrix. This procedure is

repeated until the relative differences in the SSR values of

two consecutive iterations are lower than a pre-defined conver-

gence limit. At the end of the algorithm concentration profiles

(C) and pure spectra (S) are stable and the data matrix was

resolved.

Data analysis: The UV-visible spectra data collected in

data matrix, D. This data matrix subjected to the multivariate

curve resolution analysis. Then resulted concentration and

spectra profiles of the components. The multivariate curve

resolution calculations were performed using the Matlab

toolbox multivariate curve resolution developed by R. Tauler

and A. de Juan from the University of Barcelona, Spain (see

http://www.ub.es/gesq/mcr/mcr.htm).

RESULTS AND DISCUSSION

The spectral information must be extracted and transferred

into meaningful chemical assignments. Multivariate curve

resolution is ideally suited to this task, since it provides

information on the chemical constituents and their quantitative

kinetic behaviour during processing without any prior knowl-

edge. Although UV-VIS spectra are less informative in terms

of chemical identification, they are very sensitive to changes

in concentration. To demonstrate the ability of multivariate

curve resolution to calculate concentration profiles during

reactions from the measured spectra, p-coumaric acid used in

this study as a substrate model compound for monophenolase

reaction of mushroom tyrosinase.

Figs. 1a-d show the results of the reaction in which

p-coumaric acid is affected by tyrosinase at 25 ºC and pH 6.8

under different concentration of substrate on exposure time

of 17 min. While the p-coumaric acid is degraded, an inter-

mediate state is formed, which diminishes when the final

product is achieved. This signature can be attributed to conse-

cutive reactions.

Chemometric analysis: The UV-visible spectra were used

as experimental data for the chemometric analysis to deter-

mine the number of total components and their mole fraction

in the reaction mixture during the monophenolase reaction of

mushroom tyrosinase and to resolve the concentration and

spectral profiles of these components. A critical step of curve

resolution is determination of the number of components for

monophenolase reaction of mushroom tyrosinase.

Fig.1. UV-visible spectra of cresolase reaction in variable concentrations

of substrate (p-coumaric acid)

There are several methods for chemical rank determi-

nation in two-way data. In the present contribution we have

applied subspace comparison28 as a purity-based method for

this purpose. In this method key spectra instead of full rank

matrix are analyzed. The main idea behind subspace compa-

rison is to extract information from the combinations of inde-

pendent chemometric investigations. However, this method

relies on other methods for variable selection, but it is simple

to implement and fast to use. The results of this method for a
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sample matrix (such as monophenolase reaction of mushroom

tyrosinase) are shown in Fig. 2a and b.

Fig. 2. Subspace plot for a sample matrix of monophenolase reaction of

mushroom tyrosinase solution as a typical. (a) Comparison between

simple-to-use interactive selfmodeling mixture analysis

(SIMPLISMA) variables with principal component analysis (PCA)

variables and (b) comparison between OPA variables and PCA

scores. Subspace discrepancy functionD(K) ( ) and sin2(nk) ( )

In a subspace plot the number of chemical species is

determined as the values for D(K) and sin2(νk) were equal to

each other and close to zero. Fig. 2(a) compares the simple-

to-use interactive self modeling mixture analysis variables with

the orthogonal projection approach variables. Comparison

between orthogonal projection approach variables and

principal component analysis scores are shown in Fig. 2(b).

These plots indicate that there are three variables by D(K) and

sin2(νk) equal to each other and close to zero. Hence, the chemical

rank of this matrix is three. In other word, there are three species

in during the monophenolase reaction of mushroom tyrosinase.

After the determination of components in each concentration

of substrate, the two-dimensional data matrix has been

uniquely resolved into concentration and spectral profiles of

related components. For resolving the data, multivariate curve

resolution-alternating least square method is applied. The

initial estimates of spectral profiles are determined using evol-

ving factor analysis, simple-to-use interactive self modeling

mixture analysis and orthogonal projection approach methods.

Fig. 3 (a-d) gives a resolved concentrations of components

observed during the monophenolase reaction of mushroom

tyrosinase at pH 6.8 and p-coumaric acid in variable concen-

trations. Fig. 4 (a-d) shows the corresponding spectra resolved

by multivariate curve resolution-alternating least square. It

should be pointed out that the initial estimate of spectral

profile in this case was determined using orthogonal projection

approach method. Other methods such as evolving factor

analysis and simple-to-use interactive self modeling mixture

analysis were also checked but their results were not appro-

priate.

Fig. 3. Concentration profiles resolved by MCR-ALS that mole fraction

of components (MFC) present in the monophenolase reaction of

mushroom tyrosinase solution. The reaction was done in 10 mM

PBS, pH 6.8, at 20 ºC and 70.8 µM enzyme. concentrations of

p-coumaric acid (substrate): 10 µM (a), 20 µM (b), 30 µM (c), 40 µM

(d), curve 1: p-coumaric acid (substrate), curve 2: intermediate and

curve 3: end product
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Fig. 4. Spectral profile of components resolved by MCR-ALS, in the

monophenolase reaction of mushroom tyrosinase. The reaction was

done in 10 mM PBS, pH 6.8, at 20 ºC and 70.8 µM enzyme.

concentrations of p-coumaric acid (substrate) : 10 µM (a), 20 µM

(b), 30 µM (c), 40 µM (d), curve 1: p-coumaric acid (substrate),

curve 2: intermediate and curve 3: end product

The concentration profiles suggest that immediately

after starting the reaction, the substrate curve goes to near zero,

while a charge-transfer complex (electron-donor-acceptor

complex) is formed and reaches its maximum value. Shortly

after being at its peak, the charge-transfer complex curve goes

down and converts into product (P). Moreover, concentration

profiles obtained by soft modeling can be useful for formulating

a suitable reaction model and supporting the model chosen29.

The intermediate product starts converts into the final product.

The proposed mechanism might be:

S + E 
K1

  [CTC] 
K2

 E + P

where, S is the substrate, here it denotes the p-coumaric acid,

E the enzyme tyrosinase, [CTC] a charge-transfer complex

that is an intermediate product and P the final product of the

reaction.

Based on the crystal structure of tyrosinase obtained4,

we can describe the tyrosinase-specific catalytic mechanism

(Fig. 5). At first, a peroxide ion, which forms a bridge with

two Cu(II) ions in the oxy form of tyrosinase, acts as a catalytic

base. As a result, a proton is abstracted from the phenolic

hydroxyl. Subsequently, the deprotonated oxygen atom of

monophenol binds to CuB at the sixth coordination site. At

this time, CuB is hexa-coordinated by a tetragonal bipyramidal

cage and an ortho-carbon of the substrate approaches the per-

oxide ion. One of two peroxide oxygens is then added to the

ortho-carbon of monophenol. This monooxygenase reaction

would be accelerated by the formation of a stable intermediate,

in which newly generated oxygen atoms of diphenol bind to

CuA. To form this state, His54, which is an axial ligand to

CuA, must be released from the current position. This assum-

ption is derived from the flexible feature of the residue His54

in the copper-free and Cu(II)-bound oxy forms. Simultaneously,

His54 can act as a catalytic base for the deprotonation from

the substrate. The resulting intermediate has the advantage of

easy translation of electrons, resulting in the formation of the

deoxy form of tyrosinase and quinone. Our proposed scheme

does not fit the case of catechol oxidase because the bidentate

intermediate cannot be formed because of the fixed confor-

mation of His109, which corresponds to His54 of tyrosinase

and the presence of the Phe261 lying just above the CuA site,

which is vacant in the tyrosinase structure (Fig. 6)30. There is

a consensus that the oxy form of tyrosinase can catalyze both

the monooxygenase and oxidase reactions, whereas the met

form lacks the monooxygenase activity. This can be explained

as follows: the bidentate intermediate formation, which is

permitted only by the oxy form, is essential for the mono-

oxygenase reaction, but the mono-dentate intermediate, which

is formed by the met form, is sufficient for an oxidase reaction,

as proposed for catechol oxidase. Therefore, some compounds

that bind to two Cu(II) ions in the bidentate form might be

potent inhibitors of tyrosinase4,30.
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Fig. 5. Structure-based catalytic mechanism of tyrosinase. The oxy form

of tyrosinase catalyzes the conversion of paracomaric acid

(monophenol) to the corresponding quinone through the ortho-

diphenol formation. In this scheme, His54 is released from the CuA

site, resulting in the formation of the bidentate intermediate. The

met and oxy forms of tyrosinase can catalyze the conversion of

orthodiphenol to the corresponding quinone. This reaction should

progress similarly to that of catecholoxidase

The use of multivariate resolution methods is an appro-

priate combination to study and interpret UV-visible spectral

data chemical and biochemical reactions. The mechanism of

the process and the nature of all the species involved can be

known. The advantage of the above method compared to the

classical methods is that it does not rely on the initial proposal

of a specific kinetic model but estimates directly the changes

in concentration, extracts the number of an analyte present

and calculates pure component spectra, which are chemically

meaningful. This method allows the deduction of reasonable

mechanism of a reaction. In the p-coumaric acid ortho

hydroxylation reaction by mushroom tyrosinase the chemical

rank determinations and subspace comparisons showed three

species during monophenolase reation of mushroom tyrosinase

that correspond with crystallographic data.

Vol. 25, No. 3 (2013) Multivariate Curve Resolution of p-Coumaric Acid o-Hydroxylation Reaction Mechanism  1465

200 300 400 500 600

Wavelength (nm)

1.0

0.8

0.6

0.4

0.2

0

A
b
s
o
rb

a
n
c
e (c)

200 300 400 500 600

Wavelength (nm)

1.0

0.8

0.6

0.4

0.2

0

A
b
s
o
rb

a
n
c
e

(d)



Fig. 6. Active centers of tyrosinase and of structurally homologous proteins.

A, active center of the met form I of tyrosinase complexed with

ORF378. Carbon atoms from the residues of tyrosinase and ORF378

are shown in orange and cyan, respectively
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