

A Novel Sensor Based on Polyoxometalates Modified Electrode

PENGCHENG LI, SHUHONG YE, SHOUHUI CHEN, JIANPING XIONG, LI WANG and YONGHAI SONG*

College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China

*Corresponding author: Tel/Fax: +86 791 8120861; E-mail: yhsong@jnxu.edu.cn

(*Received*: 10 November 2011; *Accepted*: 10 September 2012) AJC-12129

A novel [SiNi(H₂O)W₁₁O₃₉]⁶/poly(ferrocenylsilane) (PFS)/phthalocyanatocobalt(II) (Co(II)TAPc) modified gold (Au) electrode was fabricated by stepwise self-assembly of $Co(II)TAPc$, PFS and Keggin-type $[SiNi(H₂O)W₁₁O₃₉]$ ⁶ on gold electrode. The properties and electrochemical behaviours of the modified electrode had been investigated by atomic force microscopy and electrochemical methods. Atomic force microscopy results showed that the Au electrode surface had been successfully covered by the three materials which formed three-dimensional (3D) porous film. The electrochemical results showed that the 3D porous film modified gold electrode combined the properties of $[SiNi(H_2O)W_{11}O_{39}]^6$, PFS and Co(II)TAPc and exhibited good electrocatalytic ability to a series of chemicals, including O₂, H_2O_2 , Fe³⁺, SO₃², uric acid and ascorbic acid. The resulted [SiNi(H₂O)W₁₁O₃₉]⁶/PFS/Co(II)TAPc/Au electrode could be used in a large range of pH (0-8) and exhibited extremely fast amperometric response, low detection limit, high selectivity and wide linear range to these analyses.

Key Words: Electrochemistry, Phthalocyanatocobalt, Polyoxometalates, Sensor.

INTRODUCTION

Polyoxometalates (POMs) are well-defined, discrete transition metal oxide clusters and possess diverse properties that have attracted much attention in materials, biology and catalysis¹⁻⁴. Transition metal substituted polyoxometalates, owing to the transition metals encapsulated in the molecule, the structure of the whole compound changed with the transition metal and they exhibited some special properties⁵, have been extensively employed to modify electrode⁶. The electrode modified with the polyoxometalates has exhibited good electrocatalytic properties towards a series of chemicals⁷⁻¹¹ such as NO_2^- , BrO_3^- and IO_3^- .

Attaching redox-active polyoxometalates onto electrodes can simplify their electrochemical studies and facilitate their applications in many fields. Some materials have been exploited to attach polyoxometalates on a electrode surface, such as conductive polymer¹², cysteine¹³, cystamine¹⁴, poly(ferrocenylsilane) $(DFS)^{15}$ *etc*. The polyoxometalates immobilized on electrode surface by using these materials exhibited unique property and good electrocatalytic properties toward some chemicals. For example, the $[PMo_{12}O_{40}]$ ³ assembled on cysteamine modified gold electrode by poly(ferrocenylsilane) showed good electrocatalytic activity towards several chemicals¹⁵. The [SiNi(H₂O)W₁₁O₃₉]⁶ immobilized on a cycstamine modified gold electrode surface by electrodepositing showed good electrocatalytic ability toward¹⁴ NO₂⁻.

Transition metal nickel substituted polyoxometalates, Keggin-type $\left[\text{SiNi}(H_2O)W_{11}O_{39} \right]$ ⁶, has been used to modify electrode due to its intrinsic structure. The electrode modified with $[SiNi(H₂O)W₁₁O₃₉]⁶$ displays two reduction peaks and one oxidation peak and can be existed in a large pH range¹⁴. The poly(ferrocenylsilane) is an electroactive polyelectrolyte with positive charge, containing organometallic units in the backbone, belongs to the class of stimulus-responsive materials¹⁶. The electrochemical studies show that the poly(ferrocenylsilane) modified electrode exhibits two pairs of redox peaks^{17,18}. The first oxidation wave is attributed to oxidation of ferrocene centers at alternating positions along the chain and the second wave results from the oxidation of the remaining ferrocene centers. After the ferrocene centers are oxidized, the poly(ferrocenylsilane) films can be partially swollen and counterions can diffuse into the films to facility the electron transfer in the next step. Therefore, the ferrocene groups in poly(ferrocenylsilane) can enhance the chain mobility, the electron transfer and the active species diffusion. The poly- (ferrocenylsilane) has been used to immobilize polyoxometalate on electrode surface and the resulted electrode shows a good electrocatalytic ability toward several chemicals¹⁵. Phthalocyanatocobalt(II) (Co(II)TAPc) can self-assemble on gold surface and form well-ordered monolayer¹⁹. The Co(II)TAPc monolayer shows two pairs of revisable redox peaks and has good catalytic activity towards the reduction of $O₂$.

In this work, a novel $[SiNi(H₂O)W₁₁O₃₉]$ ⁶/PFS/ Co(II)TAPc/Au electrode is fabricated by stepwise assembly of Co(II)TAPc, PFS and $\left[SiNi(H_2O)W_{11}O_{39}\right]^6$ on gold electrode. The modified gold electrode combined the properties of $[SiNi(H₂O)W₁₁O₃₉]⁶$, PFS and Co(II)TAPc. Compared to these previous reported electrode modified with polyoxometalates²⁰⁻²⁴, the resulted electrode made here showed good electrocatalytic ability towards a series of chemicals and could be used in the neutral condition. The electrochemical and electrocatalytic properties of the modified electrode were also investigated.

EXPERIMENTAL

 $H_6[SiNi(H_2O)W_{11}O_{39}]$ was prepared according to the published procedure ²⁵. Phthalocyanatocobalt(II) (Co(II)TAPc) was synthesized on the basis of the reported procedure²⁶. Poly(ferrocenylsilane) (PFS) was purchased from Sigma-Aldrich (St. Louis, USA). Other chemicals were purchased from Beijing Chemical Reagent Factory (Beijing, China). All reagents and solvents were of analytical grade and used without further purification. Phosphate buffer solutions (PBS, pH 7.0) were prepared from 0.2 mol L^{-1} NaH₂PO₄ and 0.2 mol L^{-1} $Na₂HPO₄$. The aqueous solutions were prepared with thricedistilled water and the solutions were deoxygenated by saturated N2 before experiments.

Preparation of [SiNi(H2O)W11O39] 6-/PFS/Co(II)TAPc / Au electrode: Gold electrode was polished with 1.0, 0.3 and 0.05 µm Al_2O_3 powders before experiments and then ultrasonicated with copious amount of thrice-distilled water and absolute ethanol for 2 min. This pretreated electrode was immersed in a 100 µmol L^{-1} benzene solution of Co(II)TAPc for 4 h, followed by rinsing with thrice-distilled water in an ultrasonic bath for 1 min to remove the unbound Co(II)TAPc from the Au electrode. Then the Co(II)TAPc modified Au electrode was dipped into 0.5 mol $L⁻¹$ NaCl solution containing 1.0 mmol L-1 PFS for 1 h. Subsequently, the PFS/Co(II)TAPc/ Au electrode was immersed in PBS (pH 7.0) containing 2.0 mmol L^1 [SiNi(H₂O)W₁₁O₃₉]⁶ for 4 h. Through the above mentioned process, the $[SiNi(H_2O)W_{11}O_{39}]^6$ /PFS/Co(II)TAPc/ Au electrode was obtained.

Electrochemical experiments were performed with a CHI660C electrochemical workstation (USA) in a conventional three-electrode (the three electrode purchased from CHI (USA)) electrochemical cell, using $[SiNi(H_2O)W_{11}O_{39}]^6$ ⁻/PFS/ Co(II)TAPc/Au electrode as working electrode, a platinum wire as auxiliary electrode and a saturated calomel electrode (SCE) as reference electrode. Magnetic stirrer (IKA RH bascic 1) was used to stir the solution. Atomic force microscopy (AFM) measurements were carried out with an AJ-III (Shanghai Aijian Nanotechnology) in tapping mode. Standard silicon cantilevers (spring constant, 0.6-6 N/m) were used under its resonance frequency (typically, 60-150 kHz) at room temperature under ambient condition.

RESULTS AND DISCUSSION

Atomic force microscopic images: The surface morphology of the bare Au electrode and the Au electrode modified with Co(II)TAPc, PFS/ Co(II)TAPc and $[SiNi(H_2O)W_{11}O_{39}]^6$ /PFS/Co(II)TAPc were shown in Fig. 1. There were some Au

Fig. 1. Atomic force microscopic images of differently modified Au substrates: bare Au substrate (a), Co(II)TAPc/Au substrate (b), PFS/ $Co(II)TAPc/Au$ substrate (c) and $[SiNi(H_2O)W_{11}O_{39}]^{6}/PFS/$ Co(II)TAPc/Au substrate (d). The z ranges were 20 nm

nanoparticles on the bare gold substrate as shown in Fig. 1a. The root mean square (RMS) roughness of the surface was *ca.* 1.32 nm. After the Co(II)TAPc adsorbed onto the gold substrate, many nanoparticles appeared and some nanoparticles became large (Fig. 1b) as compared with bare gold substrate (Fig. 1a). Some nanoparticles were ascribed to the aggregates of Co(II)TAPc and the other came from the Au nanopartilces with Co(II)TAPc. The RMS roughness of the surface was about 2.22 nm, which was larger than the RMS of bare gold film. When the PFS adsorbed to the Co(II)TAPc/Au surface, the surface became smoother (Fig. 1c) and the RMS decreased to 2.15 nm, suggesting that the PFS assembled on the Co(II)TAPc/ Au surface. After the $\left[SiNi(H₂O)W₁₁O₃₉\right]$ ⁶ absorbed on the PFS/Co(II)TAPc/Au substrate, a three-dimensional (3D) porous film was formed (Fig. 1d) and many convex dots also appeared on the surface of $[SiNi(H_2O)W_{11}O_{39}]^6$ /PFS/Co(II)TAPc/Au substrate. Its RMS increased to 2.82 nm. The large surface roughness might result from the $\left[\text{SiNi}(\text{H}_2\text{O})\text{W}_{11}\text{O}_{39} \right]$ ⁶⁻ particles and clearly indicated that the formation of $[SiNi(H_2O)W_{11}O_{39}]^{6}$ /PFS/Co(II)TAPc/Au electrode.

Electrochemical properties of [SiNi(H2O)W11O39] 6-/ PFS/Co(II)TAPc/Au electrode: The electrochemical properties of the $[SiNi(H_2O)W_{11}O_{39}]^6$ /PFS/Co(II)TAPc/Au electrode were investigated in N_2 -saturated PBS (pH 7.0) in the potential range of -0.85~0.7 V. The typical cyclic voltammograms (CVs) were shown by curve a in Fig. 2. Three double redox peaks were exhibited, which were agreement with previous research 14 . The three anodic peaks (I, II and III) occurred at 325, -227 and -694 mV and the corresponding cathodic peaks (I', II' and III') appeared at 295, -236 and -724 mV, respectively. The peak potential separations were 30 (I-I'), 9 (II-II') and 30 mV (III-III'), respectively. The second redox peaks were very small and even if disappeared. It is noticeable that after the $\left[\text{SiNi}(\text{H}_2\text{O})\text{W}_{11}\text{O}_{39}\right]^6$ /PFS/Co(II)TAPc/ Au electrode was repetitively scanned for 100 cycles in N_2 saturated PBS (pH 7.0) in the range of $-0.85V-0.7$ V at 50 $mV s⁻¹$, the peak current only decreased by 5.2 % and the peak potential was almost unchanged (curve b in Fig. 2). These results suggested the $\left[\text{SiNi}(\text{H}_2\text{O})\text{W}_{11}\text{O}_{39} \right]$ ⁶/PFS/ Co(II)TAPc/ Au electrode was very stable in the neutral condition.

Fig. 2. Cyclic voltammograms of $[SiNi(H₂O)W₁₁O₃₉]^{6}/PFS/Co(II)TAPc/$ Au electrode in 0.2 mol L^{-1} PBS (pH 7.0) with first (a) and 100th scan (b). Scan rate: 50 mV s^{-1}

Fig. 3 showed the cyclic voltammograms of the $[SiNi(H₂O)W₁₁O₃₉]$ ⁶/PFS/Co(II)TAPc/Au electrode scanned at different scan rates in the range of -0.85 V ~ 0.7 V in 0.2 mol L¹ PBS (pH 7.0). The peak currents of the three redox couples increased linearly with the scan rates increasing (the inset). And the peak-to-peak separation was almost unchanged, indicating that electron transfer reaction involved with a surface confined process. The electron transfer rate k_s is estimated to be 2.52 s⁻¹ according to $k_s = \alpha nFv/RT^{27}$, where α is the cathodic electron transfer coefficient, n is the electron transfer number, R is the gas constant $(R = 8.314$ J mol K^{-1}), T is the temperature in Kelvin $(T = 298 \text{ K})$ and F is the Faraday constant.

Fig. 3. Cyclic voltammograms of the $\left[\text{SiNi}(\text{H}_2\text{O})\text{W}_{11}\text{O}_{39} \right]$ ⁶⁻n/PFSn/ $Co(II)TAPc/Au$ electrode in 0.2 mol L^{-1} PBS (pH 7.0) at different scan rates (from inner to outer: 10, 40, 70, 100, 130,160, 190, 240, 300 mV s-1). Inset: the plot of the first redox peak current *versus* the scan rates

In general, the reduction of $[SiNi(H_2O)W_{11}O_{39}]^{6}$ was accompanied by protonation and the construction of the [SiNi(H₂O)W₁₁O₃₉]⁶/PFS/Co(II)TAPc/Au electrode was also based on the electrostatic interaction. Thus, the pH of the solution might possibly play a crucial role in the electrochemical behaviours and stability of the $[SiNi(H_2O)W_{11}O_{39}]^6$ /PFS/ Co(II)TAPc/Au electrode. As shown in Fig. 4, the peak currents decreased rapidly with the increase of pH in the range of 0.0- 2.0 (*ca.* 25 %) and subsequently was maintained, suggesting the $[SiNi(H₂O)W₁₁O₃₉]^{6}/PFS/Co(II)TAPc/Au$ electrode was stable in neutral solution and could be used in a large range of pH (0-8.0).

Fig. 4. Plots of peak current for $\left[SiNi(H_2O)W_{11}O_{39}\right]$ ⁶/PFS/Co(II)TAPc/Au electrode *versus* pH of electrolyte solution (PBS)

Electrocatalytic activity of [SiNi(H2O)W11O39] 6-/PFS/ $Co(II)TAPc/Au$ electrode: The $[SiNi(H₂O)W₁₁O₃₉]$ ⁶/PFS/ Co(II)TAPc/Au electrode showed a good electrocatalytic activity toward the oxidation of ascorbic acid. As shown in Fig. 5b, an obviously catalytic current appeared in $0.2 \text{ mol } L^{-1}$ PBS (pH 7.0) in the presence of 1.3 mM ascorbic acid as compared with Co(II)TAPc/Au electrode, PFS/Au electrode, $PFS/Co(II) TAPc/Au$ electrode, $[SiNi(H₂O)W₁₁O₃₉]⁶/Au$ electrode (data not shown) and the $[SiNi(H_2O)W_{11}O_{39}]^6$ /PFS/ Co(II)TAPc/Au electrode in the absence of ascorbic acid (Fig. 5a). With the ascorbic acid concentration increasing, the anodic peak (I) current increased apparently while corresponding cathodic current decreased markedly. Other peak currents changed slightly, which suggested that ascorbic acid was mainly catalyzed by the first redox process. The plots of steadystate current *versus* substrate concentration showed that the catalytic current was linear to the ascorbic acid concentration in the range of 1.0-160 µmol L^{-1} (r = 0.9990, n = 8) and 3.25-12.57 mmol L^{-1} (r = 0.9998, n = 20) (inset b). The reduction current increased rapidly to achieve 95 % of the steady-state current within 2 s. The important parameters were summarized in Table-1.

E/V vs. SCE

Fig. 5. CVs of the $[SiNi(H_2O)W_{11}O_{39}]^6$ /PFS/Co(II)TAPc/Au electrode in 0.2 mol L^{-1} PBS (pH 7.0) in the absence (a) and presence of 1.3 mmol $L⁻¹$ ascorbic acid (b), 0.5 mmol $L⁻¹$ uric acid (c), 2.0 mmol $L⁻¹$ NaSO₃ (d), 4.0 mmol L⁻¹ FeCl₃ (e), 1.0 mmol L⁻¹ H₂O₂ (f) and saturated O₂ (g). Inset: the plots of steady-state current *versus* substrate concentration. Scan rate: 50 mV s^{-1}

TABLE-1				
PARAMETERS OF CHRONOAMPEROMETRIC				
RESPONSE TO DIFFERENT SPECIES FOR				
$[SiNi(H, O)W_{11}O_{30}]^{6}/PFS/Co(II)TAPc/GOLD ELECTRODE$				
(RECORDED IN 0.2 mol L^{-1} PBS, pH = 7.0)				
Species	Linear range	Detection limit	Correlation	n
	$\pmod{L^{-1}}$	(μ mol L^{-1})	coefficient	
AA	$0.001 - 0.16$	0.30	0.9990	8
	3.25-12.57		0.9998	20
UA.	$0.001 - 1.75$	0.20	0.9985	20
SO ₃ ²	$0.002 - 4.44$	0.24	0.9999	23
	5.44-14.44		0.9996	9
$Fe3+$	$0.002 - 0.9$	0.45	0.9996	8
	1.30-2.71		0.9996	4
\cdots	\blacksquare \cdot \cdot \cdot \cdot \cdot	T T T \cdot \cdot		

AA = Ascorbic acid, UA = Uric acid

The $[SiNi(H_2O)W_{11}O_{39}]^6$ /PFS/Co(II)TAPc/Au electrode also had good catalytic ability toward the oxidation of uric acid (Fig. 5c). The $[SiNi(H₂O)W₁₁O₃₉]$ ⁶/Au electrode, PFS/ Au electrode and Co(II)TAPc/Au electrode showed poor catalytic effects toward the electrocatalytic oxidation of uric acid (data not shown). While, the $[SiNi(H_2O)W_{11}O_{39}]^6$ -/PFS/ Co(II)TAPc/Au electrode showed a better catalytic ability as compared with above modified electrodes. With the increase of uric acid concentration in the electrolyte solution, the anodic peak current (I) increased obviously and other peak was almost unchanged. This result indicated that the first redox processes catalyzed the oxidation of uric acid. The catalytic current was linear to the uric acid concentration in the range of 1.0 µmol L^{-1} -1.75 mmol L^{-1} (r = 0.9985, n = 20) (inset c) and the detection limit was 0.2μ mol L⁻¹ (Table-1).

In addition, the $[SiNi(H_2O)W_{11}O_{39}]^6$ /PFS/Co(II)TAPc/Au electrode also showed good catalytic ability toward SO_3^2 , Fe^{3+} , $H₂O₂$ and $O₂$ as shown in Fig. 5d-g. The electrocatalytic oxidation of SO_3^2 was shown in Fig. 5d. A dramatic increase of anodic peak currents appeared at potential around 0.5 V after 2.0 mmol L^{-1} SO₃² was added into the 0.2 mmol L^{-1} PBS (pH 7.0). Meanwhile, the related cathodic peak current was not observed. The amplitude of the SO_3^2 oxidation current was proportional to the concentration of SO_3^2 in the range of 2 umol L⁻¹-4.44 mmol L⁻¹ (r = 0.9999, n = 23) and 5.44-14.44 mmol $L⁻¹$ (r = 0.9996, n = 9) (inset d). The detection limit was 0.24 µmol L^{-1} (Table-1). According to previous studies¹⁵, the possible reason was that poly(ferrocenylsilane) has an effect on the oxidation of SO_3^2 . Fig. 5e showed the electrocatalytic reduction of Fe³⁺. The second redox process was a key factor on the reduction of Fe 3+ here. It is worth to note a new redox pair at potential of 0.4-0.5 V appeared after the oxidation by Fe3+. It may be interpreted that the hybrid film has somewhat redox responsive permeability. When Fe³⁺ ions were added to electrolyte solution, they can be diffused to the inner layer. The hybrid film would be swollen along the ferrocene main chain and the redox peak of poly(ferrocenylsilane) appeared. This behaviour has potential application on the molecular release. The catalytic current was linear to the $Fe³⁺$ concentration in the range of 2 µmol L⁻¹-0.9 mmol L⁻¹ (r = 0.9996, n $= 8$) (inset e) and the detection limit was 0.24 umol L⁻¹ (Table-1). The electrocatalytic reduction of H_2O_2 was related to the third redox pair. Fig. 5f showed the CVs of reduction of H_2O_2 . Upon addition of H_2O_2 into the 0.2 mol L⁻¹ PBS (pH 7.0), the catalytic current increased obviously. The phenomena indicated that the third redox pair played an important role toward the reduction of H_2O_2 . The [SiNi(H_2O) $W_{11}O_{39}$]⁶ \prime PFS/Co(II)TAPc/ Au electrode has the ability to the reduction of O_2 gas. Fig. 5g showed the cyclic voltammograms in 0.2 mol $L⁻¹$ PBS (pH 7.0) in the presence of O_2 . The second and the third redox couples increased greatly and other peak currents remained almost unchanged. This feature could be explained that the second redox couples played an important role in the process of reduction of O_2 gas. Thus, the electrocatalytic behaviour was ascribed to the Co(II)TAPc, for the capability to the reduction of $O₂$ gas.

Interference study: Since the modified electrode showed good electrocatalytic activity toward a series of chemicals including O_2 , H_2O_2 , Fe^{3+} , SO_3^2 , uric acid, ascorbic acid and it

"No interference (variance of catalytic current $\leq 6\%$); "interference (variance of catalytic current > 6%); AA = ascorbic acid; UA = uric acid

might have potential applications as sensor to detect these analyses, the interference study is inevitable. Common chemicals such as K⁺, Na⁺, Cl⁻, ClO₃⁻, SO₄² and H₂PO₄⁻ in 20-fold concentration did not show interference to these analyses. While, one analyse in 1-fold concentration, others in 5-fold concentration displayed serious interference. The results were shown in Table-2, indicated the sensor has good selectivity.

Reproducibility and stability of the $\left[\text{SiNi}(\text{H}_2\text{O})\text{W}_{11}\text{O}_{39}\right]$ **⁶⁻ /PFS/Co(II)TAPc/Au electrode:** 0.5 mmol L-1 ascorbic acid was determined repeatedly at the identical surface of $[SiNi(H₂O)W₁₁O₃₉]⁶$ /PFS/Co(II)TAPc/Au electrode successive 10 times and the relative standard deviation (RSD) was 4.2 %. The precision at renewed surface of $[SiNi(H_2O)W_{11}O_{39}]^6$ /PFS/ Co(II)TAPc/Au was also investigated and the RSD of 7.8 % $(n = 6)$. It indicated that the modeled electrode has a good reproducibility.

Conclusion

The $[SiNi(H_2O)W_{11}O_{39}]^6$ /PFS/Co(II)TAPc/Au electrode has been successfully fabricated by stepwise assembly of $Co(II)$ TAPc, PFS and Keggin-type [SiNi(H₂O)W₁₁O₃₉]⁶ on Au electrode. The resulted electrode could be used in a large range of pH (0-8.0) and showed good electrocatalytic ability toward a series of chemicals. The modified electrode has good stability and selectivity. It might have potential application as sensor to detect these analyses in the field of electrocatalysis.

ACKNOWLEDGEMENTS

This work was financially supported by National Natural Science Foundation of China (20905032, 21065005, 21174058), Natural Science Foundation of Jiangxi Province (2008GZH0028), Foundation of Jiangxi Educational Committee (GJJ10389), the State Key Laboratory of Electroanalytical Chemistry (2008003), Young Scientist of Jiangxi Province (20112BCB23006) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

REFERENCES

- 1. C.L. Miguel, I. Takeru, Y. Hisahi and Y. Toshihiro, *Chem. Mater*., **19**, 2589 (2007)
- 2. Z.M. Zhang, Y.F. Qi, C. Qin, Y.G. Li, E.B. Wang, X.L. Wang, Z.M. Su and L. Xu, *Inorg. Chem*., **46**, 8162 (2007).
- 3. X.L. Wang, Y.F. Bi, B.K. Chen, H.Y. Lin and G.C. Liu, *Inorg. Chem*., **47**, 2442 (2008).
- 4. L.H. Bi, K.V. Foster, T. Mccormac and E. Dempsey, *J. Electroanal. Chem*., **605**, 24 (2007).
- 5. S.Y. Zhai, J.Y. Liu, J.G. Jiang and S.J. Dong, *Electroanalysis*, **15**, 1165 (2003).
- 6. P. Wang, X.P. Wang and G.Y. Zhu, *New J. Chem*., **24**, 481 (2000).
- 7. M.A. Rahman, M.S. Won, P.H. Wei and Y.B. Shim, *Electroanalysis*, **18**, 993 (2006).
- 8. C.X. Li, Y. Zhang, K.P.O' Halloran, J.W. Zhang and H.Y. Ma, *J. Appl. Electrochem*., **39**, 421 (2009).
- 9. H. Hamidi, E. Shams, B. Yadollahi and F.K. Esfahani, *Talanta*, **74**, 909 (2008).
- 10. M. Jiang, X.D. Zhai and M.H. Liu, *J. Mater. Chem*., **17**, 193 (2007).
- 11. Y. Gu, H.Y. Ma, K.P. O' Halloran, S.L. Shi, Z.J. Zhang and X.G. Wang,
- *Electrochim. Acta*, **54**, 7194 (2009). 12. J. Molina, A.I. del Río, J. Bonastre and F. Cases, *Eur. Polym*. *J*., **44**, 2087 (2008).
- 13. B. Keita, R. Contant, P. Mialane, F. Sécheresse, P. Oliveira and L. Nadjo, *Electrochem. Commun*., **8**, 767 (2006).
- 14. C.Y. Chen, Y.H. Song and L. Wang, *Electrochim. Acta*, **54**, 1607 (2009).
- 15. C.Y. Chen, Y.H. Song and L. Wang, *Electroanal*., **20**, 2543 (2008).
- 16. M. Peter, R.G.H. Lammertink, M.A. Hempenius and G.J. Vancso,*Langmuir*, **21**, 5115 (2005).
- 17. X.J. Wang, L. Wang, J.J. Wang and T. Chen, *J. Phys. Chem. B*, **108**, 5627 (2004) .
- 18. K. Cui, Y. Song and L. Wang, *Electrochem. Commun*., **10**, 1712 (2008).
- 19. U. Mazur, M. Leonetti, W.A. English and K.W. Hipps, *J. Phys. Chem. B*, **108**, 17003 (2004).
- 20. W.H. Guo, L. Xu, F.Y. Li, B.B. Xu, Y.B. Yang, S.P. Liu and Z.X. Sun, *Electrochim. Acta*, **55**, 1523 (2010).
- 21. B.Q. Huang, L. Wang, K. Shi, Z.X. Xie and L.S. Zheng, *J. Electroanal. Chem*., **615**, 19 (2008).
- 22. S.Y. Gao, X. Li, C.P. Yang, T.H. Li and R. Cao, *J. Solid State Chem*., **179**, 12279 (2006).
- 23. Y.P. Shan, G.C. Yang, Y.L. Sun, S.J. Pang, J. Gong, Z.M. Su and L.Y. Qu, *Electrochim. Acta*, **53**, 569 (2007).
- 24. C.D. Zhang, C.Y. Sun, S.X. Liu, H.M. Ji and Z.M. Su, *Inorg. Chim. Acta*, **363**, 718 (2010).
- 25. P.J. Kulesza, M. Chojak, K. Karnicka, K. Miecznikowski, B. Palys and A. Lewera, *Chem. Mater*., **16**, 4128 (2004).
- 26. A. Sivanesan and S.A. John, *Biosens. Bioelectron*., **23**, 708 (2007).
- 27. J. Xu, F. Shang, J.H.T. Luong, K.M. Razeeb and J.D. Glennon, *Biosens. Bioelectron*., **25**, 1313 (2010).