

Optimization of Pyrolysis for MgO Recycling in Magnesia-Based Flue Gas Desulfurization

WANZHONG KANG, YANBO ZHOU, ZHIGANG SHEN, XUANYI TANG and JUN LU*

College of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai 200237, P.R. China

*Corresponding author: Fax: +86 21 64252737; Tel: +86 21 64252058; E-mail: lujun@ecust.edu.cn

(Received: 10 October 2011;

Accepted: 5 September 2012)

AJC-12091

The magnesia (MgO)-based flue gas desulfurization process can effectively remove sulfur dioxide and the absorbent-MgO can be recycled *via* the pyrolysis of the major flue gas desulfurization byproduct MgSO₃. In the current study, the pyrolysis conditions of the flue gas desulfurization byproducts was optimized to achieve efficient MgO recycling in the laboratory. The optimal pyrolysis conditions were 550 °C and 10 K/min heating rate. The dried MgSO₃ was found to have higher decomposition efficiency than the sample with moisture. The decomposition efficiency of MgSO₃ reached 90 %, whereas the MgO content in the pyrolyzed product reached 70 % and had ideal reactivity. The actual byproducts from the power plant were also pyrolyzed under the optimal conditions and compared with the MgSO₃ samples produced in laboratory. Given the existence of impurities, the pyrolysis effect of the actual byproducts was slightly inferior to the laboratory-produced MgSO₃. Therefore, the impurity content of the byproducts must be decreased to efficiently recycle MgO.

Key Words: Magnesia-based flue gas desulfurization, Pyrolysis, MgO, Reactivity.

INTRODUCTION

The combustion of fossil fuels such as coal and oil releases sulfur dioxide to the atmosphere. Sulfur dioxide is an important compound that contributes to acid wetting. Power plants driven by fossil fuels produce huge amounts of flue gas that are high in SO₂ content. Tall flue gas stacks disperse emissions by diluting pollutants in ambient air and transporting them to other regions¹⁻³. Given that stringent environmental regulations on SO₂ emissions have been enacted in many countries, SO₂ is now being removed from flue gases by a variety of methods⁴⁻⁶. Various flue gas desulfurization technologies control SO₂ emissions from power plants⁷. Wet scrubbing is effective in removing SO₂ from flue gas using an alkaline sorbent slurry, usually limestone, lime, or magnesia (MgO), to scrub SO₂ containing flue gas⁸. In the wet-scrubbing flue gas desulfurization process, hot flue gas is made to contact a fine spray of lime slurry in a chamber and the sprayed slurry simultaneously absorbs $SO_2^{9,10}$. SO_2 scrubbing technologies produce enormous quantities of byproducts, such as gypsum and $MgSO_3^{11}$. Though these flue gas desulfurization byproducts can be used as fertilizers in farming, they also cause secondary pollution in high amounts, considering the increasing demand for SO₂ removal12-15.

An alternative to SO₂ removal is the MgO-based flue gas desulfurization process, wherein MgO is used as the desulfurizer. The amount of solid waste MgSO₃ is significantly reduced *via* the recycling of MgO, consequently protecting

the environment. By recycling MgO, sulfur can be recovered in the form of commercial-quality sulfuric acid¹⁶. Hence, the optimization of the conditions of desulfurizer regeneration is very important in increasing the efficiency of the MgO-based flue gas desulfurization process. The SO₂-absorber MgO can be effectively recycled *via* the pyrolysis of the flue gas desulfurization primary byproduct MgSO₃¹⁷. Indeed, MgO-based flue gas desulfurization produces almost no solid waste and is a promising desulfurization process causing no secondary pollution.

In the MgO-based flue gas desulfurization process for absorbing SO₂ in flue gas, MgO first reacts with H₂O. An Mg(OH)₂ slurry is then produced to neutralize the H₂SO₃ from the reaction of SO₂ and H₂O. Besides the primary byproduct MgSO₃, MgSO₄ is also produced, which should be inhibited to achieve an efficient MgO recycling. After crystallization, dehydrolysis, as well as drying, MgSO₃ is pyrolyzed and then converted into MgO. This conversion process releases high concentrations of SO₂ that can be used as a raw material in manufacturing sulfuric acid. The highly reactive regenerated MgO can be recycled in the flue gas desulfurization process. The reactions in the MgO-based flue gas desulfurization process are as follow:

$$MgO + H_2O \rightarrow Mg(OH)_2$$
(1)

 $Mg(OH)_2 + SO_2 \rightarrow MgSO_3 + H_2O$ (2)

Given the existence of SO_3 in flue gas, a low amount of $MgSO_4$ is also produced:

$$MgSO_3 + 1/2O_2 \rightarrow MgSO_4$$
(3)

$$MgO + SO_3 \rightarrow MgSO_4$$
(4)

As mentioned earlier, the desulfurizer MgO can be regenerated *via* the pyrolysis of the flue gas desulfurization byproduct MgSO₃. The yield and reactivity of the regenerated MgO are significantly influenced by the pyrolysis temperature. Overheating sinters the MgO particles and blocks the pores of MgO, consequently decreasing its reactivity¹⁶. In the present study, the pyrolysis process of MgSO₃ is optimized to efficiently recycle MgO.

EXPERIMENTAL

To investigate the effects of pyrolysis conditions on MgO regeneration, high purity MgSO₃ was used. An MgSO₃ sample was produced from the reaction of MgCl₂ and Na₂SO₃. The prepared sample contained 70-80 % MgSO₃ and 6-10 % MgSO₄. Fig. 1 illustrates the experimental apparatus.

Fig. 1. Schematic diagram of the experimental apparatus. (1) Nitrogen cylinder. (2) Tubular oven with quartz tube. (3) Rotor flowmeter. (4) and (5) Flask with SO₂ absorber. (6) and (7) Flask with NaOH. (8) Vacuum pump

The effects of the pyrolysis temperature and moisture content on MgSO₃ pyrolysis were investigated. The MgSO₃ sample was pyrolyzed in the tubular oven. The pyrolysis temperature was automatically controlled. The SO₂ generated by the pyrolysis was absorbed by the liquid in the flask. The system was aerated by nitrogen. The reactivity of the regenerated MgO was characterized by X-ray diffraction as well as the hydration and citric acid methods to investigate the effect of pyrolysis conditions on MgO reactivity. Subsequently, the actual byproducts (50 % MgSO₃ and 20 % MgSO₄) of the flue gas desulfurization from the power plant were pyrolyzed under the optimal conditions.

The SO₂ and MgO yields from the pyrolysis were calculated as follow:

SO₂ yield =
$$(m_1 - m_2) / (\frac{64}{104} \mathbf{a} \cdot \mathbf{m}_1)$$
 (5)

MgSO₃ decomposition percentage = $m_2 b \left(\frac{40}{104} a.m_1 \right)$ (6)

where, m_1 and m_2 are the masses of the flue gas desulfurization by-products before and after pyrolysis, a is the MgSO₃ content of the flue gas desulfurization byproducts and b is the MgO content in the pyrolysis product.

Activity test of MgO

Hydration method: In a weighting bottle ($\phi 40 \text{ mm} \times 40 \text{ mm}$), 2 ± 0.001 g of specimen was added and mixed with

20 mL of distilled water, then covered with a small gap. At 20 \pm 2 °C and relative humidity of 70 \pm 5 %, the samples were allowed to settle for 15 min for hydration and the activity of MgO was measured by the pH changes of the solution with time. Two specimens were simultaneously run.

Citric acid method: About 1.7 ± 0.001 g of specimen was placed in a dry beaker, which was then placed on a magnetic stirrer platform (500 r/min). A 200 mL standard solution of citric acid with two drops of phenolphthalein as indicator was quickly added to the beaker at 40 °C. The time of colour change was recorded using a stopwatch. When the test solution turned to red, the watch was stopped. The activity of MgO was measured by this timed event. Two specimens were simultaneously run.

RESULTS AND DISCUSSION

Effect of the pyrolysis temperature on the SO₂ yield: Fig. 2 shows the effect of the pyrolysis temperature on the SO_2 yield. The SO_2 yield from the flue gas desulfurization decomposition of MgSO₃ increased with increased temperature. The SO₂ yield significantly increased and reached 92 % when the temperature reached 550 °C. When the temperature was increased from 600 to 1000 °C, the SO₂ yield did not change and was between 93-99.5 %. This result indicated that most of the MgSO₃ decomposed below 550 °C. The thermogravimetry (TG) curves in Fig. 3 shows the same results. The flue gas desulfurization byproducts started to decompose at about 200 °C, first losing crystallized water. The TG curve dramatically dropped when the temperature reached 400 °C, indicating that MgSO₃ started to decompose at 400 °C. The TG curve became flat when the temperature reached 550 °, indicating the near completion of MgSO3 decomposition.

Fig. 2. Effect of the pyrolysis temperature on the SO₂ yield

Effect of the pyrolysis temperature on MgSO₃ decomposition: Figs. 4 and 5 show the effects of pyrolysis temperature on MgO yield and MgSO₃ decomposition. Both curves have similar trends, wherein the yield and decomposition percentage gradually increased with increased temperature. MgSO₃ decomposition percentage was almost constant until 550 °C, suggesting the completion of the pyrolytic process.

Fig. 3. Thermogravimetry curves of MgO-based flue gas desulfurization by-product decomposition

Effect of pyrolysis temperature on MgO reactivity: The simplified hydration and citric acid methods were used to evaluate the reactivity of the regenerated MgO. The increased MgO hydration solution pH suggested the generation of Mg²⁺ and OH⁻, which characterized the reactivity of MgO. Fig. 6 shows that the hydration solution pH of the MgO regenerated at 550 °C increased from 8.87 to 10.21 with increased hydration time from 0 to 12 min. The hydration solution pH of MgO regenerated at 1000 °C reached only 7.95 in 12 min and was much lower than that of MgO regenerated at 550 °C. These results indicated that MgO regenerated at low temperatures underwent a much quicker hydration and had a higher reactivity. In contrast, MgO regenerated at high temperatures lost reactivity. This loss was probably caused by the sintering of MgSO₃ particles and the blocking of their pores. The citric acid method evaluated MgO reactivity by the colour transition time of the solution. A quicker colour change corresponded to a higher MgO reactivity. The citric acid method showed the same results as the simplified hydration method in the evaluation of MgO reactivity. Fig. 7 shows that the colour transition time decreased from 263 to 76 s with increased pyrolysis temperature from 450 to 550 °C. The colour transition time then significantly increased with increased pyrolysis temperature. The MgO sample regenerated at 1000 °C had a colour transition time of 532 s, which meant very low reactivity. MgO regenerated at 550 °C had the best reactivity compared with all those regenerated at other temperature ranges. Hence, at low temperatures, MgSO3 was not completely pyrolyzed. At high temperatures, MgSO3 was less active because of the sintering of the MgO particles and the blocking of their active sites.

Fig. 6. Changes in the pH of the MgO hydration solution at different pyrolysis temperatures.

Fig. 7. Effect of pyrolysis temperature on the colour transition time of MgO in the citric acid analysis. The XRD analysis gave a comparison of the crystal structure of MgSO₃ pyrolyzed at 550 and 1000 °C. The XRD pattern of MgSO₃ pyrolyzed at 550 °C had a rough baseline with sharp peaks. The peaks under 2 θ diffraction angles were irregular, which suggested that the sample pyrolyzed at the lower temperature

had a higher crystallinity. At 1000 °C, the ratio of detection to strongest peaks was 100 and the absorption of full width at half maximum decreased from 0.457° to 0.272°. Apparently, with increased pyrolysis temperature, the crystal size and crystallinity of MgO increased and MgO was easily sintered. Consequently, the reactivity of the regenerated MgO decreased.

Effect of moisture on MgSO₃ decomposition: MgSO₃ samples with moisture contents of 0.5 % and 20 % were pyrolyzed at 550 °C for 2 h. Fig. 8 shows that the MgSO₃ samples with 5 % and 20 % moisture produced SO₂ with yields of 74.2 % and 77.0 %, respectively. Both yields were lower than the SO₂ yield from dried MgSO₃ (85.2 %). Fig. 9 shows that with 5 % and 20 % moisture, MgSO₃ decomposition percentage decreased by about 5 % and 10 % compared with dried MgSO₃. Evidently, moisture was detrimental to MgSO₃ pyrolysis probably because moisture decreased the heat transfer efficiency and diffusion of SO₂ within the MgSO₃ particles.

Effect of moisture on MgO reactivity: The reactivity of MgO produced *via* MgSO₃ pyrolysis was analyzed by the hydration and citric acid methods. The colour transition time for MgO with 5 % and 20 % moisture were 43 and 40 s, respectively, whereas that for dried MgO was only 23 s (Fig. 10). The hydration method also showed the same results, where the pH of the MgO samples with 5 % and 20 % moisture increased much lower compared with the dried sample (Fig. 11). Apparently, moisture decreased the reactivity of MgO probably because the incomplete decomposition of MgSO₃ produced less gaps between the MgO crystals. In addition, the lattice distortion was not significant because the moisture induced the formation of a compact crystal structure. Hence, drying is essential in increasing the reactivity of recycled MgO.

Pyrolysis of flue gas desulfurization byproducts from the power plant: The actual flue gas desulfurization byproducts from the power plant were pyrolyzed at the optimum conditions of 550 °C, 10 K/min heating rate and 23 h pyrolysis time. The flue gas desulfurization byproducts were dried before pyrolysis. The results are given in Table-1.

Based on Table-1, the actual flue gas desulfurization byproducts decomposed under the optimal conditions.

Fig. 10. Colour transition time in the citric acid method analysis of MgO with different moisture contents

TABLE-1 PYROLYSIS OF THE FGD BYPRODUCTS FROM THE POWER PLANT				
	SO ₂ yield (%)	MgO yield (%)	Sample decomposition percentage (%)	Colour transition time in citric method (s)
FGD byproduct from the power plant	76.8	31.5	59.5	208
MgSO ₃ sample	92.0	43.5	77.1	76

Fig. 11. pH changes during the hydration of MgO with different moisture contents

However, the decomposition percentage was only 59.5 %, which was much lower than that of the laboratory-produced MgSO₃ sample. The actual byproducts had SO₂ and MgO yields that were 15.2 % and 12.0 % lower than those of the laboratory-produced MgSO₃. The colour transition time in the citric acid analysis for the actual byproducts increased by 132 s, indicating that the pyrolyzed product had a lower reactivity. The flue gas desulfurization byproducts from the power plant probably contained impurities such as dust, which cannot be pyrolyzed. Therefore, in an actual flue gas desulfurization process, dust must be removed to increase the purity of the flue gas desulfurization byproduct to improve the recycling efficiency of MgO.

Conclusion

MgSO₃ decomposition was significantly influenced by the pyrolysis temperature. At 550 °C and 10 K/min heating rate, the MgSO₃ decomposition percentage and MgO yield reached 90 % and 70 %, respectively. The reactivity of recycled MgO was negatively correlated to the MgO crystallinity. A denser crystal structure corresponded to a less reactive recycled MgO. Moisture was detrimental to MgSO₃ decomposition and recycled MgO reactivity. Dried MgSO₃ had a higher decomposition percentage and produced more reactive MgO than the samples with moisture. The actual flue gas desulfurization byproducts from the power plant decomposed under the determined optimal pyrolysis conditions. However, the impurities in the byproducts had adverse effects during pyrolysis, ultimately decreasing the yield of SO₂ and MgO. Therefore, impurities such as dust must be removed to obtain a higher amount of highly reactive regenerated MgO.

ACKNOWLEDGEMENTS

The authors are thankful for the financial support provided by Shanghai Leading Academic Discipline Project (No. B506).

REFERENCES

- 1. K. Felsvang, D.B. Olsen and F. Jensen, Environ. Prog., 18, 75 (1999).
- B.J.P. Buhre, L.K. Elliott, C.D. Sheng, R.P. Gupta and T.F. Wall, *Prog. Energy Combust. Sci.*, **31**, 283 (2005).
- Q. Zhong, Coal Fired Flue Gas Desulfurization and Denitration Technology and Engineering Applications, Chemical Industry, Beijing, edn. 2 (2007).
- 4. G. Hu, K. Dam-Johansen, S. Wedel and J.P. Hansen, *Prog. Energy Combust. Sci.*, **32**, 386 (2006).
- Z. Chen, H. Xu, M. Bai, C. Wu and J. Chu, *Fresenius Environ. Bull.*, 19, 2644 (2010).
- 6. A. Lancia, D. Musmarra and F. Pepe, Ind. Eng. Chem. Res., 36, 197 (1997).
- 7. N. Ilten and U. Sungur, Fresenius Environ. Bull., 18, 2295 (2009).
- Y.G. Zhou, M.C. Zhang, D.F. Wang and L. Wang, *Ind. Eng. Chem. Res.*, 44, 8830 (2005).
- 9. Y.C. Chen and J.H. Shyh, Powder Technol., 154, 14 (2005).
- 10. C.F. Liu and S.M. Shih, Ind. Eng. Chem. Res., 43, 184 (2004).
- 11. S. Fabrizio, M.D. Ascenzo and A. Lancia, *Sep. Purif. Technol.*, **34**, 43 (2004).
- W.A. Dick, Y. Hao, R.C. Stehouwer, J.M. Bigham, W.E. Wolfe and D. Adriano, Land Application of Agricultural, Industrial and Municipal By-Products. Madison, WI: Soil Science, Society of America, pp. 505-536 (2000).
- J.M. Bigham, D.A. Kost, R.C. Stehouwer, J.H. Beeghly, R. Fowler, S.J. Traina, W.E. Wolfe and W.A. Dick, *Fuel*, 84, 1839 (2005).
- 14. L. Chen, W.A. Dick and S. Nelson, Environ. Pollut., 114, 161 (2001).
- S.Y. Li, P.L. Lan, S.G. Xu, X.R. Liao, C.H. Chen and X.C. Xu, *Chin. J. Soil Sci.*, 35, 441 (2004).
- J.H. Beeghly, Product Development of FGD Recovered Magnesium Hydroxide, Proceedings of 16th Annual International Pittsburgh Coal Conference, pp. 462-467 (1999).
- 17. A. Urbanek and K. Kumanowski, Chem. Abstr., 137, 113391 (2002).