Synthesis, Characterization and Crystal Structure of a Supramolecular Compound Diaquabis(1,10-phenanthroline- $\kappa^{2} \mathbf{N}, \mathbf{N}^{\prime}$)cobalt(II) 4,4'-Methylenebis(3-hydroxy-2-naphthoate) Tetrahydrate

Min-Quan Dong, Li Song*, Chun Ling and Kai Xue
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
*Corresponding author: Fax: +86 571 86843224; Tel: +86 571 86843781; E-mail: songli_spring@yahoo.com.cn

(Received: 29 December 2011; Accepted: 30 August 2012) AJC-12030

Abstract

In present study, the metal-organic coordinated polymers from pamonic acid, 4,4-methylenebis(3-hydroxy-2-naphthoic acid) (L), a supramolecular compound $\mathrm{Co}(\text { (phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~L} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathbf{1})$ was synthesized. Its structure was determined by single crystal X -ray diffraction experiment. The compound crystallizes in the monoclinic system and adopts a centrosymmetric space group of $\mathrm{C} 2 / \mathrm{c}$. In $\mathrm{Co}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~L} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$, two phen ligands coordinate to $\mathrm{Co}(\mathrm{III})$ through two N atoms, respectively. And the other two coordinated sites in the octahedron geometry of $\mathrm{Co}(\mathrm{II})$ are completed by four $\mathrm{H}_{2} \mathrm{O}$ through O atoms. Pamonic acid only acts as a counter anion. There are several hydrogen bonds between coordinated water of coordination cation, pamonic acid anion and solvent water molecules. These hydrogen bonding interactions assemble three components of this compound firmly and from a supramolecular chain along c -axis.

Key Words: Pamonic acid, Supramolecular compound, Hydrogen bond.

INTRODUCTION

Self-assembled supramolecular systems and metal-organic coordinated polymers have received considerable attention, not only for their potential applications as optoelectronic, magnetic materials and sensors, or in gas storage and catalysis but also exhibiting structural and topological novelty ${ }^{1-5}$. When supramolecular framework is regarded as the synthetic target, some noncovalent interactions must be cared for construction, such as hydrogen bonding, $\pi-\pi$ stacking, anion $-\pi$ and C-H $\cdots \pi$ interactions. These interactions have also been emphasized repeatedly by other literatures ${ }^{48}$. Here, we adopt pamonic acid as a multiple linkage to construct metal-organic coordination polymers and supramolecular systems, because pamonic acid could coordinate to metal centre by its two carboxyl groups and also could form firmly hydrogen bonds profit from its two hydroxyl groups ${ }^{9-17}$. Here we report a supramolecular compound $\mathrm{Co}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~L} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathbf{1})$ constructed by hydrogen bonds, which is obtained in our attempt to synthesis metalorganic coordinated polymer utilizing of pamonic acid.

EXPERIMENTAL

All chemicals were obtained from commercial sources and used as received. Elemental analysis for C, H, N and O were performed on an Elementar Vario MICRO analytic instrument.

Synthesis of $\mathrm{Co}(\mathrm{phen})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~L} \cdot\left(\mathbf{H}_{2} \mathrm{O}\right)_{4}(\mathbf{1})$: The compound was synthesized by a solution reaction from pamonic acid. Phen ($20 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(12 \mathrm{mg}, 0.05 \mathrm{mmol})$ was dissolved in 5 mL EtOH and $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ to produced a yellow solution. To this solution a 5 mL DMF solution of pamonic acid ($20 \mathrm{mg}, 0.05 \mathrm{mmol}$) and $\mathrm{NaOH}(4 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added at room temperature. Consequently, a yellow solution was formed and filtrated. After evaporating the filtration at room temperature for 2 days, amount of yellow crystals were obtained. (yield $29 \mathrm{mg}, 63.5 \%$ based on $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$). Anal. calcd. (\%) for $\mathrm{C}_{47} \mathrm{H}_{42} \mathrm{CoN}_{4} \mathrm{O}_{12}$: C, 61.78; H, 4.63; N, 6.13; O, 21.01. Found (\%): C, 61.23; H, 4.91; N, 6.62; O, 21.87.

Single crystal structure determination: X-Ray intensity data of $\mathrm{Co}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~L} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ were collected on a black prism crystal ($0.48 \mathrm{~mm} \times 0.20 \mathrm{~mm} \times 0.12 \mathrm{~mm}$) at 293(2) K on a Rigaku RAXIS-RAPID CCD area detector diffractometer using graphite monoc-hromated MoK_{α} radiation ($\lambda=0.071075$ nm). The structure was solved using direct methods and refined by full-matrix least-squares techniques. All non-hydrogen atoms were assigned anisotropic displacement parameters in the refinement. All hydrogen atoms were added at calculated positions and refined using a riding model. The structure was refined on F^{2} using SHELXTL-97 software package without any unusual events ${ }^{18}$. The crystal and refinement details for
compound $\mathbf{1}$ are listed in Table-1. The selected bond lengths and bond angles are presented in Table-2.

\left.| | TABLE-1 |
| :--- | :--- |
| CRYSTAL DATA, COLLECTION AND STRUCTURE | |
| REFINEMENT PARAMETERS FOR COMPOUND 1 | |$\right]$

TABLE-2			
SELECTED BOND LENGTHS (A) AND BOND ANGLES (${ }^{\circ}$) FOR 1			
Col-O1	2.0847(17)	Col-O1i	2.0847(17)
Co1-N1	2.1420 (18)	Col-N1i	2.1420 (18)
Col-N2	$2.1150(14)$	Col-N2i	$2.1150(14)$
O1-Co1-O1 ${ }^{\text {i }}$	93.46(11)	O1-Co1-N1	87.67(7)
O1-Co1-N2	90.26(7)	O1-Col-N1 ${ }^{\text {i }}$	173.62(7)
O1-Co1-N2 ${ }^{\text {i }}$	95.38(7)	O1 ${ }^{\text {i }}$-Co1-N1	173.62(7)
O1 ${ }^{\text {i}}$-Col-N2	95.38(7)	O1-Col-N1 ${ }^{\text {i }}$	87.67(7)
O1 $1^{\text {i }}$ Col-N2 ${ }^{\text {i }}$	90.26(7)	N1-Co1-N2	78.33(6)
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\text {i }}$	91.89(9)	N1-Col-N2 ${ }^{\text {i }}$	95.89(6)
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1^{\text {i }}$	95.89(6)	N2-Col-N2 ${ }^{\text {i }}$	171.78(9)
$\mathrm{N} 2{ }^{\mathrm{i}}$-Col-N1 ${ }^{\text {i }}$	78.33(6)	-	-
Symmetry codes: (i) -x +1, y, $\mathrm{z}+1 / 2$.			

RESULTS AND DISCUSSION

We have synthesized the supramolecular compound $\mathrm{Co}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~L} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathbf{1})$. The compound crystallizes in a monoclinic system and adopts a centrosymmetric space group of $\mathrm{C} 2 / \mathrm{c}$. As shown in Fig. 1, the cation is a $\mathrm{Co}(\mathrm{II})$ complex, in which the $\mathrm{Co}(\mathrm{II})$ adopt a octahedral coordinated sphere make up of four N atoms from two phen ligands and two O atoms from coordinated water ${ }^{19-23}$. Corresponding to the $\mathrm{Co}($ II) complex, the pamonic acid acts as the counter anion. Nearby the cation and anion, there are four solvent water molecules. And there are seven types of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds betweeen these three components. These hydrogen bonds have also been examined by the PLATON program ${ }^{24,25}$ and through these interactions, a supramolecular hydrogen bonding chain are present along c-axis (Fig. 2). Fig. 3 showed the packing diagram along the c -direction. The details of hydrogen bonding interactions are shown in Table-3.

Fig. 1. Structure and labeling of the compound 1, with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii

Fig. 2. Hydrogen bonding chain along caxis

Fig. 3. Packing diagram viewed along the c-direction

TABLE-3				
HYDROGEN-BOND GEOMETRY (${ }^{\circ}$, ${ }^{\circ}$) FOR 1				
D-H...A	D-H	H \cdots A	D...	D-H..A
O1-H1WA \cdots O2	0.83(3)	1.89(3)	2.720(2)	171(3)
O1-H1WB...O5 ${ }^{\text {ii }}$	0.82(3)	1.91(3)	2.732(3)	171(3)
O4-H4..O2	0.78(2)	1.80(3)	2.537(2)	156(3)
O5-H5WA…O6 ${ }^{\text {iii }}$	0.84(3)	2.00 (3)	2.828(3)	170(3)
O5-H5WB $\cdot \mathrm{O} 3$	0.80(3)	1.89(3)	2.692(2)	173(3)
O6-H6WA $\cdots \mathrm{O}^{\text {iv }}$	0.84(3)	1.88(3)	2.717(3)	171(3)
O6-H6WB $\cdots{ }^{\text {O }}{ }^{\text {v }}$	0.79(3)	2.13(3)	2.856(3)	153(3)

Symmetry codes: (ii) $x,-y, z-1 / 2$; (iii) $x+1 / 2,-y+1 / 2, z+1 / 2$; (iv) $-x$ $+1 / 2, y+1 / 2,-z+1 / 2 ;(v)-x+1 / 2,-y+1 / 2,-z+1$.

Conclusion

We have synthesized the supramolecular compound $\mathrm{Co}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~L} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathbf{1})$. And it is characterized as a chain-like supramolecular structure constructed by seven types of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between cation(anion) and four solvent water molecules.

ACKNOWLEDGEMENTS

The authors are grateful for financial support from the Natural Science Foundation of Zhejiang Province (Project Y4100610).

REFERENCES

1. J.D. Badjic, A. Nelson, S.J. Cantrill, W.B. Turnbull and J.F. Stoddart, Acc. Chem. Res., 38, 723 (2005).
2. S. Miyazaki, T. Kojima and S. Fukuzumi, J. Am. Chem. Soc., 130, 1556 (2008).
3. L. Song, W.X. Chai and J.W. Lan, Acta Crystallogr., E65, O1749 (2009).
4. W.X. Chai, L. Song, H.Y. Shen and K.Y. Shu, Phosphorus Sulfur Silicon Rel. Elem., 184, 3212 (2009).
5. J. Xu, W.X. Chai, J. Lin, H.S. Shi and K.Y. Shu, Acta Crystallogr., E65, M1419 (2009).
6. M. Yoshizawa, M. Tamura and M. Fujita, Science, 312, 251 (2006).
7. D. Braga, F. Grepioni and G.R. Desiraju, Chem. Rev., 98, 1375 (1998).
8. W.-X. Chai, L. Song, K.-Y. Shu, H.-S. Shi and L.-S. Qin, J. Chem. Crystallogr., 40, 448 (2010).
9. Q. Shi, Y.T. Sun, L.Z. Sheng, K.F. Ma, M.L. Hu, X.G. Hu and S.M. Huang, Cryst. Growth Des., 8, 3401 (2008).
10. M. Du, C.P. Li, X.J. Zhao and Q. Yu, Crystengcomm, 9, 1011 (2007).
11. F. Luo, Y.T. Yang, Y.X. Che and J.M. Zheng, Crystengcomm, 10, 981 (2008).
12. D.A. Haynes, W. Jones and W.D.S. Motherwell, Crystengcomm, 7, 538 (2005).
13. D.A. Haynes, J. Van de Streek, J.C. Burley, W. Jones and W.D.S. Motherwell, Acta Crystallogr. E, 62, O1170 (2006).
14. D.A. Haynes, Z.F. Weng, W. Jones and W.D.S. Motherwell, Crystengcomm, 11, 254 (2009).
15. A.C. Blackburn, A.J. Dobson and R.E. Gerkin, Acta Crystallogr. C, 52, 1269 (1996).
16. A.Q. Ma, Z.B. Jia and G.P. Wang, Acta Crystallogr. E, 62, M21 (2006).
17. T.M. Shang, Q.F. Zhou and J.H. Sun, Acta Crystallogr. E, 63, O506 (2007).
18. G.M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008).
19. A. Bulut, H. Icbudak, O.Z. Yesilel, H. Olmez and O. Buyukgungor, Acta Crystallogr. E, 59, M736 (2003).
20. B.H. Ye, X.M. Chen, T.X. Zeng and L.N. Ji, Polyhedron, 13, 2185 (1994).
21. J.H. Bi, L.T. Kong, Z.X. Huang and J.H. Liu, Inorg. Chem., 47, 4564 (2008).
22. L.G. Qiu, L.N. Gu, G. Hu and L.D. Zhang, J. Solid State Chem., 182, 502 (2009).
23. J. Abdelhak, S.N. Cherni, M.F. Zid and A. Driss, Acta Crystallogr. E, 62, M2394 (2006).
24. A.L. Spek, PLATON A Multipurpose Crystallographic Tool, Utrecht University: Utrecht, The Netherlands (2001).
25. P. Vandersluis and A.L. Spek, Acta Crystallogr. A, 46, 194 (1990).
