

NOTE

Crystal Structure of $\left(\mathbf{N H}_{4}\right)_{9}\left(\mathbf{P}_{2} \mathrm{VW}_{22} \mathrm{O}_{78}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$

Hai-Xing Liu*, Xiao-Yan Ren, Li-Mei Wan, Yun-Chen Zhang and Xi-Shi Tai
College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, P.R. China
*Corresponding author: E-mail: haixingliu@tom.com

(Received: 2 November 2011;
Accepted: 31 August 2012)

The title compound, $\left(\mathrm{NH}_{4}\right)_{9}\left(\mathrm{P}_{2} \mathrm{VW}_{22} \mathrm{O}_{78}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, is prepared by hydrothermal method. It contains PVW heteropolyacid anion, ammonium cations and water molecular. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds interaction.

Key Words: Hydrothermal, $\left(\mathbf{N H}_{4}\right)\left(\mathrm{P}_{2} \mathrm{VW}_{22} \mathrm{O}_{78}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$.

Keggin-type polyoxometalates $\left[\mathrm{XM}_{12} \mathrm{O}_{40}\right]^{\mathrm{n}-}(\mathrm{X}=\mathrm{B}, \mathrm{P}, \mathrm{Si}$, etc.; $\mathrm{M}=\mathrm{Mo}, \mathrm{W}$) and their derivatives have been investigated for over a century because of rich structural chemistry and diverse physicochemical properties ${ }^{1}$. Potential activities of Keggin anions as catalysts is shown by previous workers ${ }^{2-5}$. The polyoxometalates may provide structurally well-characterized surfaces formed by approximately coplanar. we sythesize the $\left(\mathrm{NH}_{4}\right)_{9}\left(\mathrm{P}_{2} \mathrm{VW}_{22} \mathrm{O}_{78}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ and report its crystal structure here.

Fig. 1. Molecular structure of the title compound with atom-labling scheme
All commercially obtained reagent-grade chemicals were used without further purication. A mixture of $\mathrm{CdCO}_{3}(0.1$ mmol, 0.018 g$),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{WO}_{4}(0.1 \mathrm{mmol}, 0.029 \mathrm{~g}), \mathrm{NH}_{4} \mathrm{VO}_{3}$ $(0.1 \mathrm{mmol}, 0.012 \mathrm{~g}), \mathrm{H}_{3} \mathrm{PO}_{4}(0.2 \mathrm{~mL})$ and triethylamine (1 mL) were added into 20 mL water with $20 \%(\mathrm{v} / \mathrm{v})$ ethanol and heated for 12 h at $140^{\circ} \mathrm{C}$. The solution was obtained by filtration after cooling to room temperature. Colourless block

Fig. 2. Packing diagram of three-dimensional of the title complex
single crystals suitable for X-ray measurements were obtained after a few weeks. Triethylamine and Cd^{2+} do not take part in the reaction.

The crystal structure of $\left(\mathrm{NH}_{4}\right)_{9}\left(\mathrm{P}_{2} \mathrm{VW}_{22} \mathrm{O}_{78}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}($ Fig. 1) is built up of heteropolyacid cluster, ammonium cation and water molecules. The packing diagram of three-dimensional structure of the title complex is shown in Fig. 2. The crystal
data and structure refinement is shown in Table-1. In the heteropolyacid cluster, the P atom is coordinated by four O atoms $(\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 4)$ to form a tetrahedron. There are eleven terminal O atoms, twenty-four $\mu_{2}-\mathrm{O}$ atoms, two $\mu_{3}-\mathrm{O}$ atoms and one $\mu_{4}-\mathrm{O}$ atom. The $\mu_{2}-\mathrm{O} 3$ bridges P1 and W5, while $\mu_{2}-\mathrm{O} 5$ bridges W 1 and V 1 . The $\mu_{2}-\mathrm{O} 10$ bridges W 5 and V 1 , while $\mu_{2}-$ O 17 bridges W 9 and V 1 . The μ_{3}-O1 bridges P1, W1 and W2, while $\mu_{3}-\mathrm{O} 2$ bridges P1, W3 and W4. The $\mu_{4}-\mathrm{O} 4$ bridges P1, W9, W10 and W11. The five atoms (W1, W2, W4, W5, V1) are on the equatorial plane. The distance from O 1 to the plane is $0.332 \AA$, while the distance from O2 (or O3) to the plane is $0.371 \AA$. The distance from O 4 to the plane is $1.684 \AA$. The d (W-O) are in the range of 1.58-2.45 \AA. The d (V-O) are in the range of 2.33-2.48 A. Some bond lengths are shown in Table-2.

TABLE-1 CRYSTAL DATA AND STRUCTURE REFINEMENT FOR 100113 g	
Identification code	100113g
Empirical formula	$\mathrm{H}_{40} \mathrm{~N}_{9} \mathrm{O}_{80} \mathrm{P}_{2} \mathrm{VW}_{22}$
Formula weight	5603.99
Temperature	298(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Pbcm
Unit cell dimensions	$\mathrm{a}=12.9700(10) \AA, \alpha=90^{\circ}$
	$\mathrm{b}=23.120(2) \AA, \beta=90^{\circ}$
	$\mathrm{c}=38.810(3) \AA, \gamma=90^{\circ}$
Volume	11637.8 (16) A 3
Z, Calculated density	$4,3.198 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$21.826 \mathrm{~mm}^{-1}$
$\mathrm{F}_{(000)}$	9696
Crystal size	$0.31 \mathrm{~mm} \times 0.18 \mathrm{~mm} \times 0.16 \mathrm{~mm}$
Theta range for data collection	1.57-25.02 ${ }^{\circ}$
Limiting indices	$\begin{aligned} & -15 \Leftarrow \mathrm{~h} \Leftarrow 13,-27 \Leftarrow \mathrm{k} \Leftarrow 21,-46 \\ & \Leftarrow 1 \Leftarrow 42 \end{aligned}$
Reflections collected/unique	56934/10396 [R(int) $=0.2447]$
Completeness to theta $=25.02$	99.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.1279 and 0.0564
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	10396 / 0 / 684
Goodness-of-fit on F^{2}	1.018
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.1076, \mathrm{wR}_{2}=0.2705$
R indices (all data)	$\mathrm{R} 1=0.2568, \mathrm{wR}_{2}=0.3720$
Largest diff. peak and hole	3.252 and -4.696 e ${ }^{-3}$

TABLE-2	
BOND LENGTHS [A] FOR 100113 g	
$\mathrm{V}(1)-\mathrm{O}(10)$	$2.33(3)$
$\mathrm{V}(1)-\mathrm{O}(5)$	$2.37(3)$
$\mathrm{V}(1)-\mathrm{O}(17)$	$2.46(3)$
$\mathrm{V}(1)-\mathrm{O}(11)$	$2.48(3)$
$\mathrm{W}(1)-\mathrm{O}(23)$	$1.70(3)$
$\mathrm{W}(1)-\mathrm{O}(1)$	$2.37(3)$
$\mathrm{W}(2)-\mathrm{O}(24)$	$1.67(3)$
$\mathrm{W}(2)-\mathrm{O}(1)$	$2.34(3)$
$\mathrm{W}(3)-\mathrm{O}(25)$	$1.58(4)$
$\mathrm{W}(3)-\mathrm{O}(2)$	$2.39(3)$
$\mathrm{W}(4)-\mathrm{O}(26)$	$1.61(3)$
$\mathrm{W}(4)-\mathrm{O}(2)$	$2.39(3)$
$\mathrm{W}(5)-\mathrm{O}(27)$	$1.71(3)$
$\mathrm{W}(5)-\mathrm{O}(3)$	$2.36(3)$
$\mathrm{W}(6)-\mathrm{O}(11)$	$1.82(3)$
$\mathrm{W}(6)-\mathrm{O}(12)$	$1.98(3)$
$\mathrm{P}(1)-\mathrm{O}(1)$	$1.54(3)$
$\mathrm{P}(1)-\mathrm{O}(4)$	$1.55(3)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{C})$	0.9002
$\mathrm{~N}(2)-\mathrm{H}(2 \mathrm{C})$	0.9002

The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds interaction.

ACKNOWLEDGEMENTS

This study were supported by the Natural Science Foundation of Shandong Province (No. ZR2010BL025), State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (Jilin University) (No. 2011-13) and MOE Key Laboratory of Analytical Chemistry for Life Science (Nanjing University) (No. KLACLS1002) and the National Science Foundation of China (No. 211771132).

REFERENCES

1. C.L. Hill, Chem. Rev., 98, 1 (1998).
2. I.V. Kozhevnikov, Chem. Rev., 98, 171 (1998).
3. H.-X. Wu, M. Zhou, Y.-X. Qu and H.-X. Li, Chin. J. Chem. Eng., 17, 200 (2009).
4. M.-L. Xue, C. Wei and L. Yang, Chin. Chem. Lett., 20, 344 (2009).
5. H.-H. Li, K.-W. Li and H. Wang, Chin. J. Inorg. Chem., 25, 512 (2009).
