

Construction of a [Co₃(IP)(4,4'-obb)₃]_n with 4,4'-Oxybisbenzoic Acid and Imidazo[4,5-f][1,10]phenanthroline

JING JIE YAN¹, KAI CHENG^{2,*} and YUE QIU³

¹College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China ²School of Chemistry and Pharmaceutical Engineering, Shandong Polytechnic University, Jinan 250353, P.R. China ³Department of Chemistry, Dezhou University, Dezhou 253023, P.R. China

*Corresponding author: E-mail: kai861218@163.com

(Received: 11 April 2012;

Accepted: 31 August 2012)

AJC-12062

A new coordination polymer $[Co_3(IP)(4,4'-obb)_3]_n$ (1) (4,4'-obb = 4,4'-oxybisbenzoic acid, IP = 1H-imidazo[4,5-f][1,10] phenanthroline was synthesized and characterized by single-crystal X-ray diffraction, elemental analysis, IR, PXRD. Single-crystal X-ray analyses revealed that $[Co_3(IP)(4,4'-obb)_3]_n$ was bridged by 4'4-obb ligands to form a 1D infinite chain, was further extended to 2D supramolecular structure by hydrogen bonding interactions and $\pi \cdots \pi$ interactions.

Key Words: Coordination polymer, Crystal structure, Cobalt(II).

INTRODUCTION

The field of the novel functional metal-organic frameworks (MOFs) continues to expand at a remarkable pace due to their diverse topologies and potential applications in gas storage, magnetism, catalysis and luminescence¹⁻⁵. It is still a great challenge to rationally prepare and control the structures and composition of target products because of the difficult prediction of either the composition or the structure of the reaction product⁶. Many ligands with carboxyl and N-containing were used due to their various coordination modes and structural features⁷.

EXPERIMENTAL

The elemental analyses for C, H and N were performed on an Elementar Vario Micro Cube analyzer. The IR spectra were recorded on a Thermo Nicolet IR200 FT-IR spectrometer as KBr pellets (4000-400 cm⁻¹). Powder X-ray diffraction (PXRD) analysis was performed on a MiniFlex2 X-ray diffractometer.

Synthesis of $[Co_3(IP)(4'4-obb)_3]_n$ (1): A mixture of $Co(NO_3)$ (0.0291 g, 0.1 mmol), 4,4'-oxybisbenzoic acid (4,4'-obb) (0.0258 g, 0.1 mmol), 1*H*-imidazo[4,5-f][1,10]phenan-throline (IP) (0.022 g, 0.1 mmol), NaOH (0.008 g, 0.2 mmol) and deionized water (10 mL) was sealed in a 25 mL Teflon-lined stainless steel vessel and heated at 160 °C for 72 h. After cooling to room temperature, the red block crystals were obtained and washed with alcohol for several times (Yield:

52 % based on Co). Experimental PXRD data matches well with simulated powder pattern (Fig. 1). Elemental anal. calcd. (%) for $C_{82}H_{50}N_8O_{20}Co_3$: C, 59.85; H, 3.04; N, 6.81. Found: C, 59.78; H, 2.93; N, 6.65. IR: 1618 s, 1384 s, 1241 m, 1159 m, 879 m, 780 w, 619 m.

Fig. 1. Powder X-ray diffraction of [Co₃(IP)(4,4'-obb)₃]_n

X-ray crystallography: Suitable single crystals were selected under a polarizing microscope and fixed with epoxy cement on fine glass fiber which was mounted on a Bruker Smart 1000 CCD diffractometer with a MoK_{α} radiation (λ = 0.71073 Å) at 293(2) K. The hydrogen atoms bound to carbon

TABLE-1 CRYSTALLOGRAPHIC DATA AND STRUCTURE REFINEMENT SUMMARY FOR COMPLEX 1					
Empirical formula	$C_{82}H_{50}N_8O_{20}Co_3$	Z, Calculated density (mg/m ³)	1, 1.572		
Formula weight	1644.09	F(000)	839		
Crystal system, space group	Triclinic, P-1	Absorption coefficient (mm ⁻¹)	0.795		
Unit cell dimensions	a = 11.439(5) (Å)	Limiting indices	-13≤h≤13		
	b = 11.940(5) (Å)		-12≤k≤14		
	c = 14.660(5) (Å)		-17≤l≤17		
Volume (Å ³)	1736.3(12)	θ range for data collection (°)	1.51 to 25.00		
Reflections collected / unique	8974 / 6042	Largest diff. peak and hole (e/Å ³)	0.600 and -0.356		
Final R indices [I>2 σ (I)]	R1 = 0.0359, wR2 = 0.1034	R indices (all data)	R1 = 0.0486, wR2 = 0.1126		

TABLE-2 SELECTED BOND LENGTHS (Å) AND ANGLES (°) FOR COMPLEX 1						
Bond (Å)	Co(1)-O(1)	2.0740(18)	Co(1)-O(3A)#1	2.043(2)		
	Co(1)-O(1A)#1	2.0740(18)	Co(1)-O(8B)#2	2.1403(18)		
	Co(1)-O(3)	2.043(2)	Co(1)-O(8C)#3	2.1403(18)		
Bond angles (°)	O(3)-Co(1)-O(1)	95.86(9)	O(1)-Co(1)-O(8B)#2	89.32(7)		
	O(3)-Co(1)-O(1A)#1	84.14(9)	O(1)-Co(1)-O(8C)#3	90.68(7)		
	O(3A)#1-Co(1)-O(1A)#1	95.86(9)	O(1A)#1-Co(1)-O(8C)#3	89.32(7)		
Symmetry order #1 $y = 1$						

Symmetry code: #1 - x + 1, -y + 1, -z + 1; #2 x + 1, y - 1, z; #3 - x, -y + 2, -z + 1.

were located by geometrically calculations. All non-hydrogen atoms were refined by full-matrix least-squares techniques. All calculations were performed by the SHELXTL97 program⁸. Crystal data, intensity collection and structure refinement details are summarized in Table-1. Selected bond lengths and bond angles are given in Table-2. CCDC: 869418.

RESULTS AND DISCUSSION

Description of crystal structure: Single crystal X - ray diffraction reveals that [Co₃(IP)(4,4'-obb)₃]_n crystallizes in triclinic system, P-1 space group. The asymmetric unit contains three Co cations, four obb anions, two imidazo [4,5-f][1,10]phenanthroline molecules. As shown in Fig. 2, the Co1 is coordinated by six O atoms from six 4,4'-obb ligands [Co1-O, ranging from 2.043(2)-2.140(18) Å] to form a octahedral geometry, the Co2 is coordinated by three O atoms from three 4,4'-obb ligands and two N atoms from one IP ligand. The Co(II) atoms were linked with obb which lead to form three nuclear molecule and 1D chain was obtained via the 4,4'-obb anions (Fig. 3). The centroid distance of parallel benzene rings of IP ligands between neighbouring chains is ca. 3.705 Å, which means there are weak $\pi \cdots \pi$ interactions between them⁹. As a result, the 1-D chains were built into 2-D supramolecular structure via interchain N- H…O hydrogen bonds and $\pi \dots \pi$ interactions (Fig. 4).

Fig. 2. View of the coordination environment of Co^{II} ions

Fig. 3. Perspective views of the 1D chain structure

Fig. 4. 2D supramolecular structure showing hydrogen bonding interactions (pink dashed line) and $\pi \cdots \pi$ interactions (green dashed line)

ACKNOWLEDGEMENTS

The authors gratefully acknowledged the financial support from the National Natural Science Foundation of Shandong Province (No. ZR2010BL010) and Science & Technology Program of Shandong Province (No. 2010GWZ20251).

REFERENCES

- 1. S. Kitagawa, R. Kitaura and S.I. Noro, Angew. Chem. Int. Ed., 43, 2334 (2004).
- 2. Y.B. Zhang, W.X. Zhang, F.Y. Feng, J.P. Zhang and X.M. Chen, *Angew. Chem. Int. Ed.*, **48**, 5287 (2009).

- 3. Y.F. Zeng, X. Hu, F.C. Liu and X.H. Bu, Chem. Soc. Rev., 2, 469 (2009).
- 4. E.Y. Lee, S.Y. Jang and M.P. Suh, J. Am. Chem. Soc., 127, 6374 (2005).
- 5. X.Y. Wang, L. Wang, Z.M. Wang and S. Gao, J. Am. Chem. Soc., **128**, 674 (2006).
- F.C. Liu, Y.F. Zeng, J. Jiao, X.H. Bu, J. Ribas and S.R. Batten, *Inorg. Chem.*, 45, 2776 (2006).
- C. Biswas, A.D. Jana, M.G.B. Drew, G. Mostafa and A. Ghosh, *Polyhedron*, 28, 653 (2009).
- G.M. Sheldrick, SHELXTL NT Version 5.1. Program for Solution and Refinement of Crystal Structures, University of Göttingen, Germany (1997).
- C.L. Chen, C.Y. Su, Y.P. Cai, H.X. Zhang, A.W. Xu, B.S. Kang and H.C. Zur Loye, *Inorg. Chem.*, 42, 3738 (2003).