

Determination of Cd, Pb and Ni in Syrian Cow Milk by Graphite Furnace Atomic Absorption Spectrometry

SAAD ANTAKLI^{1,*}, NAZIRA SARKIS² and AHMAD ABO HAJAR¹

¹Deptartment of Chemistry, Faculty of Science, Aleppo University, Aleppo, Syria ²Deptartment of Analytical and Food Chemistry, Faculty of Pharmacy, Aleppo University, Aleppo, Syria

*Corresponding author: E-mail: antakli@scs-net.org

(Received: 11 January 2012;

Accepted: 30 August 2012)

AJC-12043

Graphite furnace atomic absorption spectrometry method was elaborated and applied for determining Cd, Pb and Ni in Syrian cow milk samples using the transversally heated graphite atomizer with integrated graphite platforms. The effects of several chemical modifiers, such as $NH_4H_2PO_4$, $Mg(NO_3)_2$, Zr, W, ascorbic acid and mixture of $NH_4H_2PO_4$ and Zr were studied to obtain optimal pyrolysis and atomization conditions for the studied analytes. The most efficient modifier was proved to be the mixture of $NH_4H_2PO_4$ and Zr, which gave the optimal pyrolysis and atomization temperatures: 900 and 1800 °C, 1000 and 1900 °C, 1500 and 2500 °C respectively for Cd, Pb and Ni. The characteristic masses (m_0) were 1.29 pg Cd, 25.20 pg Pb and 33.13 pg Ni. Limits of detection (LOD, 3s) were 0.044 µg L⁻¹ Cd, 0.94 µg L⁻¹ Pb and 1.32 µg L⁻¹ Ni. Limits of quantification (LOQ, 10s) were 0.146 µg L⁻¹ Cd, 3.133 µg L⁻¹ Pb and 4.4 µg L⁻¹ Ni. The cow milk mean contents were to be 3.78 µg kg⁻¹ for Cd, 17.59 µg kg⁻¹ for Pb and 0.45 mg kg⁻¹ for Ni.

Key Words: Cow milk, Cadmium, Lead, Nickel, Graphite furnace atomic absorption spectrometry, Chemical modifiers.

INTRODUCTION

Milk is an ideal food essential for newborns due to its composition and availability. In addition to its macronutrient, i.e. protide, glucide and lipids, milk also contains micronutrients, i.e. vitamins (A, D and B groups) and elements that are absolutely essential during the first months of a baby's life since it is the only source of nutrients¹. Milk contains several elements, which are essential or toxic such as cadmium, lead and nickel, due to these elements presence in the biosphere in general². Quantitation of essential and toxic trace elements in milk is an important analytical task, both for human health safety reasons and environmental bio-monitoring purposes. This requires elaboration and application of analytical methods of high sensitivity, selectivity and robustness. But the determination of trace inorganic constituents in milk is not a trivial task because of the complexity of the emulsion. Cow milk contains around 3.4 % of proteins, 2.8 % of casein, 3.7 % of fat and 4.6 % of lactose; additionally, the elements are present as different compounds that can affect both the sample preparation and the measurement strategies³. Direct procedures for milk analysis were proposed using different spectro-analytical techniques. Each one presents some difficulties where Quinaia and Nobrega⁴, demonstrated that the presence of fat compounds affects the performance of the auto-sampler in graphite furnace

atomic absorption spectrometry (GFAAS) and the pneumatic nebulization in the inductively coupled plasmas-optical emission spectrometry (ICP-OES)⁵ or inductively coupled plasmas-mass spectrometry (ICP-MS)⁶. The formation of carbon residues causes a gradual deterioration of the graphite tube in GFAAS, affects excitation conditions in ICP-OES and isobaric interferences in ICP-MS. In GFAAS milk samples were diluted with a solution containing ethanol, nitric acid and hydrogen peroxide to remove the organic matter during the heating cycle⁷. This procedure was successfully applied for the determination of Al, Cr, Mn and Mo. Classical wet digestion⁸ and microwave digestion⁹, procedures for milk analysis were proposed using different chemicals for destroying the organic matrix of milk and left the element into a clear solution. Determination of Cd, Pb and Ni by GFAAS has already been found in the literatures with several modifiers¹⁰⁻¹⁵, like Mg(NO₃)₂, Pd(NO₃)₂ and (NH₄)₂HPO₄¹⁰ alone or mixtures (NH₄)₂HPO₄ and Mg(NO₃)₂¹¹, NH₄H₂PO₄ and Mg(NO₃)₂¹², NH₄H₂PO₄ and Mg(NO₃)₂ plus Pd¹³ for cadmium, it was also used Mg(NO₃)₂, Pd(NO₃)₂ and (NH₄)₂HPO₄¹⁰, EDTA, Pd and NH₄NO₃¹⁴, in addition to mixtures such as (NH₄)₂HPO₄ and $Mg(NO_3)_2^{11}$, $NH_4H_2PO_4$ and $Mg(NO_3)_2^{12}$, $NH_4H_2PO_4$ and $Mg(NO_3)_2$ and $Pd^{13},\,NH_4NO_3$ and Pd^{14} for lead and it was also used Mg(NO₃)₂, Pd(NO₃)₂ and (NH₄)₂HPO₄¹⁰ individually, in addition to mixtures such as $(NH_4)_2$ HPO₄ and Mg $(NO_3)_2^{11}$, Pd

and $Mg(NO_3)_2^{15}$ for nickel, with variable optimal conditions. So, we decided to determine the best modifier among five modifiers $NH_4H_2PO_4$, $Mg(NO_3)_2$, Zr, W and ascorbic acid (AA), which were chosen depending on its use as a modifier in review and availability in our laboratory, for determining of Cd, Pb and Ni in Syrian cow milk samples.

EXPERIMENTAL

The determination of Cd, Pb and Ni in Syrian cow milk was performed with a Biotech (Phoenix-986) atomic absorption spectrometer, equipped with Self- Reversal (SR) background corrector, pyrolytically coated transverse heated graphite atomizer (THGA), Argon 99.998 % was used as a purge gas. The instrumental conditions adopted for the spectrometer are presented in Table-1.

TABLE-1						
INSTRUMENTAL CONDITIONS FOR THE GFAAS						
Parameters Cd Pb Ni						
Wavelength (nm)	228.8	283.3	232.0			
Lamp current (mA)	2.0	2.0	4.0			
Slit (mm)	0.2	0.4	0.2			
Background corrector	SR	SR	SR			
Negative high voltage (V)	377.7	433.5	448.5			
Broad pulse current (mA)	1.3	1.1	1.5			
Narrow pulse current (mA)	3.0	2.5	3.5			

Sample digestion was carried out by using a closed-vessel microwave system, model Ethos D (Milestone, Sorisole, Italy), equipped with 10 TFM[®] vessels of 100 mL and a ceramic vessel jacket.

High purity deionized water obtained from a Milli-Q water purification system was used throughout. Analytical reagent grade HNO₃ 65 % ww⁻¹ and H₂O₂ 30 % ww⁻¹ (Merck, Germany) were used for sample digestion. The analytical reference solutions were prepared by successive dilution of 1000 mg L⁻¹ of Cd, Pb and Ni standard solutions (Merck, Germany) in 0.2 % HNO₃ and stored at 4 °C in dark glass bottles.

The modifiers stock solution were obtained by weighting an appropriate mass of high purity $NH_4H_2PO_4$, $Mg(NO_3)_2$, $ZrCl_4$, Na_2WO_4 and ascorbic acid (Merck, Germany), to have a concentration of 1000 mg L⁻¹, then preparing the work solutions by an appropriate dilution for each. All solutions were stored at 4 °C in dark glass bottles.

RESULTS AND DISCUSSION

Pyrolysis and atomization temperature curves: Graphite furnace atomic absorption spectrometry GFAAS is an efficient technique for determining trace elements sash as Cd, Pb and Ni. The recommended THGA conditions for the precedent determined elements revealed some differences in the electrothermal behaviours and chemical modifiers¹⁰⁻¹⁵. Chemical modifiers can alter the vapourization and atomization behaviour of the matrix and analytes, thus they can be used for removing the matrix constituents which may cause interference during measurements and for the thermal stabilization of the analytes. By this importance, standard solutions containing 3 μ g L⁻¹ Cd, 50 μ g L⁻¹ Pb and 50 μ g L⁻¹ Ni in 0.2 % HNO₃, in absence and presence of 10 μ g of several chemical

modifiers, such as NH₄H₂PO₄, Mg(NO₃)₂, Zr, W, ascorbic acid were studied to reach to the best heating programs and analytical conditions for determining Cd, Pb and Ni, depending on their pyrolysis and atomization temperature curves as illustrated in Figs. 1-3, which showed the best modifier for Cd was NH₄H₂PO₄ and the best ones for Pb and Ni were NH₄H₂PO₄ and Zr. Table-2 present the optimized conditions for the pyrolysis and atomization temperatures of Cd, Pb and Ni in the absence and presence of 10 µg NH₄H₂PO₄, Mg(NO₃)₂, Zr, W and ascorbic acid (AA) as modifiers.

Fig. 2. Modifiers effect on the pyrolysis temperature (a) and atomization temperature (b), for lead concentration in aqueous standard solutions 50 µg L⁻¹, added modifiers; Zr (♠), W (■), NH₄H₂PO₄ (▲), Mg (×), A.A (*), no modifier (●)

Fig. 3. Modifiers effect on the pyrolysis temperature (a) and atomization temperature (b) for nickel concentration in aqueous standard solutions 50 µg L⁻¹, added modifiers; Zr (♠), NH₄H₂PO₄ (■), W (▲), Mg (×), A.A (*), no modifier (●)

Concentration effects of NH₄H₂PO₄ and Zr modifier: It is noted (Table-2) that the best modifiers for Cd, Pb and Ni were NH₄H₂PO₄ and Zr at constant concentration 10 μ g to each one. Papers gave variable concentrations for each modifier, for that it is decided to determine the best concentration of the mixture NH₄H₂PO₄ and Zr modifiers depending on absorption and pyrolysis temperatures. TABLE-2

OPTIMIZED PYROLYSIS AND ATOMIZATION TEMPERATURES OF Cd, Pb AND NI IN THE ABSENCE AND PRESENCE OF NH4H2PO4, Mg(NO3)2, Zr, W AND ASCORBIC ACID AS MODIFIERS					
Element	Modifier Pyrolysis Atomization temperature (°C) temperature (°C) temperature (°C)				
	NH ₄ H ₂ PO ₄	750	1700		
	Zr	650	1700		
Cd	W	650	1600		
Ca	Mg	600	1500		
	Ascorbic acid	550	1400		
	-	500	1400		
	NH ₄ H ₂ PO ₄	750	1900		
	Zr	750	1800		
Dh	W	650	1700		
PO	Mg	550	1900		
	Ascorbic acid	550	1700		
	-	450	1700		
	NH ₄ H ₂ PO ₄	1300	2400		
	Zr	1300	2400		
NT'	W	1200	2500		
111	Mg	1150	2300		
	Ascorbic acid	1100	2400		
- 1100 2300					

For NH₄H₂PO₄: different concentrations from 10 μ g to 200 μ g were used as a modifier in aqueous standard solutions, containing for each element a constant concentration as follows: 3 μ g L⁻¹ Cd, 50 μ g L⁻¹ Pb and 50 μ g L⁻¹ Ni. The results showed that the best concentrations were at the range 10-50 μ g for Cd, 25-50 μ g for Pb and 25-100 μ g for Ni (Fig. 4).

The same study was done for Zr modifier at different concentrations from 0.2 μ g to 15 μ g in aqueous standard solutions containing 3 μ g L⁻¹ Cd, 50 μ g L⁻¹ Pb and 50 μ g L⁻¹ Ni. The results showed that the best concentration was at the range 1-3 μ g for Cd, 1-15 μ g for Pb and Ni (Fig. 5).

Fig. 4. Effects of concentration NH₄H₂PO₄ modifier on absorption (♦) and pyrolysis temperatures (■), for Cd (a), Pb (b) and Ni (c)

Fig. 5. Effects of concentration Zr modifier on absorption (•) and pyrolysis temperatures (•), for Cd (a), Pb (b) and Ni (c)

After determining the best concentration of $NH_4H_2PO_4$ and Zr modifiers for determination of Cd, Pb and Ni in aqueous solutions. It is decided to use a mixture containing $25 \,\mu g \, NH_4H_2PO_4$ plus 1 $\mu g \, Zr$ as a modifier for determining above elements. The mixture showed much better results than using each

one individually, depending on thermal stabilization of studied elements and atomic absorption (Table-3).

Flomont	Modifier	Pyrolysis	Atomization
Liement	Modifier	temp. (°C)	temp. (°C)
	-	500	1400
Cd	$25 \ \mu g \ NH_4H_2PO_4$	750	1700
Cu	1 μg Zr	650	1700
	25 μ g NH ₄ H ₂ PO ₄ and 1 μ g Zr	900	1800
	-	450	1700
Dh	$25 \ \mu g \ NH_4H_2PO_4$	750	1900
Pb	1 µg Zr	750	1800
	$25~\mu g~NH_4H_2PO_4$ and $1~\mu g~Zr$	1000	1900
	-	1100	2300
Ni	$25 \ \mu g \ NH_4H_2PO_4$	1300	2400
	1 µg Zr	1300	2400
	25 μ g NH ₄ H ₂ PO ₄ and 1 μ g Zr	1500	2500

By conclusion, the results presented in Table-3 proves that the using mixture of $NH_4H_2PO_4$ and Zr as modifiers are better than using each one individually. So, we proposed a mixture containing 25 µg $NH_4H_2PO_4$ and 1 µg Zr as modifiers, for determining Cd, Pb and Ni and optimized heating program for precedent elements as demonstrated in Table-4.

TABLE-4				
OPTIMAL	GRAPHITE FURNAC	CE TEMPERA	TURE F	PROGRAM
FOR DI	ETERMINING Cd, Pb	AND NI IN PR	RESENC	CE OF A
MIXTURE 25 µg NH4H2PO4 AND 1 µg Zr AS MODIFIER				
Step	Temperature (°C)	Ramp time,	Hold time	Argon flow rate (mL

Step	Temperature (°C) $(^{\circ}C s^{-1})$		time (s)	rate (mL min ⁻¹)
Drying 1	75	4	5	250
Drying 2	85	3	5	250
Drying 3	95	3	3	250
Drying 4	120	3	8	250
Pyrolysis	900 ^a 1000 ^b 1500 ^c	10	10	250
Atomization	1800 ^a 1900 ^b 2500 ^c	0	5	0
Cleaning	2000 ^a 2200 ^b 2600 ^c	0	1	250
^a cadmium, ^b le	ad, ^c nickel			

Validation: Limits of detection (LOD), limit of quantification (LOQ) were calculated, by considering the variability of 10 consecutive measurements of blank solution, according to $\text{LOD} = 3 \text{ S}_b/a$ and $\text{LOQ} = 10 \text{ S}_b/a$ (S_b = standard deviation of the blank and a = calibration curve slope), characteristic masses (m₀) from the calibration curves were based on the integrated absorbance, linear range and linearity (R²), were determined, All results were measured in absence and presence of the best modifiers, such as 25 µg NH₄H₂PO₄ and 1 µg Zr individually and a mixture of 25 µg NH₄H₂PO₄ plus 1µg Zr (Table-5). The analytical calibration curves of Cd, Pb and Ni are given in Fig. 6.

The results presented in Fig. 6 and Table-5, showed that the best analytical results for the three elements Cd, Pb and Ni

ANALYTICAL CHARACTERISTICS FOR Cd, Pb AND Ni WITHOUT AND WITH DEFERENT MODIFIERS						
Element	Modifier	Linear rang (µg L ⁻¹)	LOD ($\mu g L^{-1}$)	$LOQ(\mu gL^{-1})$	m ₀ pg	\mathbb{R}^2
	NH ₄ H ₂ PO ₄ and Zr	0.25 - 5	0.044	0.148	1.29	0.9836
Cd	$NH_4H_2PO_4$	0.25 - 5	0.051	0.171	1.35	0.9879
Cu	Zr	0.25 - 5	0.052	0.176	1.38	0.9884
	-	1 - 3	0.061	0.205	1.58	0.9840
	NH ₄ H ₂ PO ₄ and Zr	1 - 80	0.942	3.142	25.20	0.9961
Pb	$NH_4H_2PO_4$	5 - 80	1.161	3.870	28.14	0.9948
	Zr	2 - 80	0.970	3.235	25.91	0.9964
	-	10 - 80	1.624	5.416	37.12	0.9955
	NH ₄ H ₂ PO ₄ and Zr	15 - 100	1.320	4.400	33.13	0.9974
Ni	$NH_4H_2PO_4$	15 - 100	1.374	4.583	34.76	0.9973
	Zr	25 - 100	1.571	5.238	36.94	0.9986
	-	25 - 100	2.842	9.473	42.18	0.9992

Fig. 6. Analytical calibration curves of Cd (a), Pb (b) and Ni (c), in aqueous standard solutions; Zr (▲), NH₄H₂PO₄ (■), NH₄H₂PO₄ and Zr (♦), no modifier (×)

was the using of a mixture modifiers $NH_4H_2PO_4$ and Zr, therefore this mixture modifiers were adopted in order to determine Cd, Pb and Ni in Syrian fresh cow milk samples. Cd, Pb and Ni recovery with $NH_4H_2PO_4$ and Zr as modifiers were studied.

About 1 g fresh cow milk sample purchased from local super market (Azaz village) was put in microwave vessel and added an oxidant mixture 8 mL HNO₃ + 2 mL H₂O₂, without and with three different added concentrations of Cd, Pb and Ni (Table-6), then digestion performed according to a microwave heating program (Table-7). After digestion, samples were transferred to beaker capacity of 50 mL and then vapourized on electric heater, at relatively low temperature, to near drought, then transferred to the 10 mL flask and added 250 μ L NH₄H₂PO₄ modifier 1 mg L⁻¹ and 100 μ L of Zr modifier 0.1 mg L⁻¹ to each samples then completed up to 10 mL with deionized water. After that applied optimized conditions and measurements were made by injection of 20 μ L from the sample inside the graphite furnace. The results obtained are presented in Table-6.

TABLE-6 RECOVERY OF SPIKED MILK SAMPLE WITH CADMIUM, LEAD AND NICKEL ANALYZED BY GFAAS WITH NH ₄ H ₂ PO ₄ PLUS Zr AS MODIFIER (N = 3)					
Element	lement Add Determined Recovery (%)				
	$0 \ \mu g \ kg^{-1}$	$2.75 \pm 0.16 \ \mu g \ kg^{-1}$	-		
Cł	$1 \ \mu g \ kg^{-1}$	$3.79 \pm 0.15 \ \mu g \ kg^{-1}$	101		
Cu	$2 \ \mu g \ kg^{-1}$	4.81 ± 0.19 μg kg ⁻¹	101		
	$4 \ \mu g \ kg^{-1}$	$6.89 \pm 0.21 \ \mu g \ kg^{-1}$	102		
	$0 \ \mu g \ kg^{-1}$	15.87 ± 0. 90 μg kg ⁻¹	-		
Dh	5 μg kg ⁻¹	$21.12 \pm 1.31 \ \mu g \ kg^{-1}$	101		
PO	10 µg kg ⁻¹	26.77 ± 1.35 μg kg ⁻¹	103		
	20 µg kg -1	$36.40 \pm 1.47 \ \mu g \ kg^{-1}$	101		
	0 mg kg ⁻¹	$0.22 \pm 0.02 \text{ mg kg}^{-1}$	-		
Ni	0.1 mg kg ⁻¹	$0.31 \pm 0.02 \text{ mg kg}^{-1}$	96		
	0.2 mg kg ⁻¹	$0.41 \pm 0.03 \text{ mg kg}^{-1}$	97		
	0.4 mg kg ⁻¹	0.59 ± 0.03 mg kg ⁻¹	95		

From Tables 5 and 6, it was observed that the optimum analytical method for determining Cd, Pb and Ni was in presence a mixture modifiers of $NH_4H_2PO_4$ and Zr. The obtained results have a good accuracy, sensitivity and recovery.

Determination of cadmium, lead and nickel in some Syrian fresh cow milk: A microwave-assisted wet decomposition of 15 fresh cow milk samples, which purchased from local supermarkets in four villages (Azaz, Afrin, Zorba and Mansoura) was performed according to a microwave heating program (Table-7). And followed by the procedures which stated in the top of the vapourization and the addition of the mixture modifier from $NH_4H_2PO_4$ plus Zr and then measurements by injection of 20 µL from the sample inside the graphite furnace. The results obtained are presented in Table-8.

TABLE-7 MICROWAVE HEATING PROGRAM FOR SAMPLE DIGESTION

Step	Time (min)	Power (W)	T (°C)
1	1	250	180
2	1	0	180
3	6	250	200
4	5	400	210
5	5	650	220
6	Vent: 5 min		

TABLE-8

ELEMENTS CONCENTRATIONS IN SOME FRESH SYRIAN COW'S MILK						
Village	No.	Cd (µg kg ⁻¹ ± SD)	Pb (µg kg ⁻¹ ± SD)	Ni (mg kg ⁻¹ ± SD)		
	1	2.73 ± 0.12	15.53 ± 0.90	0.21 ± 0.02		
1 707	2	3.33 ± 0.05	15.40 ± 0.55	0.37 ± 0.02		
AZaz	3	2.81 ± 0.07	14.76 ± 0.73	0.26 ± 0.01		
	4	3.10 ± 0.10	16.60 ± 0.50	0.30 ± 0.02		
	1	3.03 ± 0.11	11.36 ± 1.06	0.33 ± 0.01		
Afrin	2	2.55 ± 0.13	12.38 ± 0.77	0.36 ± 0.03		
	3	3.27 ± 0.06	13.52 ± 1.02	0.24 ± 0.02		
	1	4.40 ± 0.05	20.04 ± 0.56	0.69 ± 0.05		
Zarba	2	5.41 ± 0.07	26.86 ± 1.20	0.72 ± 0.05		
Zorba	3	5.46 ± 0.08	18.73 ± 0.38	0.86 ± 0.05		
	4	4.74 ± 0.11	19.56 ± 0.68	0.65 ± 0.04		
Mansoura	1	3.53 ± 0.11	24.43 ± 0.76	0.40 ± 0.02		
	2	4.56 ± 0.03	18.54 ± 0.78	0.54 ± 0.03		
	3	4.01 ± 0.36	16.74 ± 2.12	0.35 ± 0.02		
	4	3.91 ± 0.06	19.44 ± 0.98	0.49 ± 0.03		
	Mean 3.78 17.59 0.45					

The lowest concentration of Cd was found as 2.55 μ g kg⁻¹ for Afrin (sample no. 2) and the highest one 5.46 μ g kg⁻¹ for Zorba (sample no. 3), with average 3.78 μ g kg⁻¹ and relative standard deviations less than 9.1 %. The lowest concentration of Pb was found as 11.36 μ g kg⁻¹ for Afrin (sample no. 1) and the highest 26.86 μ g kg⁻¹ for Zorba (sample no. 2), with average 17.59 μ g kg⁻¹ and relative standard deviations less than 12.7 %. The lowest content of Ni was found as 0.21 mg kg⁻¹ for Azaz (sample no. 1) and the highest 0.86 mg kg⁻¹ for Zorba (sample no. 2), with average 0.45 μ g kg⁻¹ and relative standard deviations less than 10.6 %.

From the results shown in Table-8, the minimum concentration of the most elements was in the village Afrin, which is a touristic area and a little industrial pollution. The highest concentrations of all elements were in the village Zorba, which is an industrial area (dye house, paper, detergent factories *etc*. in addition to be beside high way.

The average concentrations of elements cadmium, lead and nickel, in analyzed samples were found to be under permissible limits compared with world health organization¹⁶.

Conclusion

In the present work, the effects of several chemical modifiers, such as NH₄H₂PO₄, Mg(NO₃)₂, Zr, W and ascorbic acid were studied to obtain optimal pyrolysis and atomization conditions for three elements cadmium, lead and nickel. It was found that NH₄H₂PO₄ modifier is the best for Cd and Zr or NH₄H₂PO₄ is the best for Pb and Ni. The mixture NH₄H₂PO₄ and Zr were the best of all at the optimized modifiers concentrations in relation to atomic absorbance values and pyrolysis temperatures. Individually NH₄H₂PO₄ modifier concentration was from 10 to 50 µg for Cd, 25 to 50 µg for Pb and 25 to 100 μg for Ni and Zr modifier concentration was from 1 to 3 μg for Cd and 1 to 15 μ g for Pb and Ni, where the mixture modifier concentrations 25 µg NH₄H₂PO₄ and 1 µg Zr gave much better results compared with each one individually. Validation of the proposed method was good and suitable, for that it was applied to determine a cadmium, lead and nickel in Syria fresh cow milk samples and to estimate the risk of contamination with these toxic heavy metals, compared with the obtained results, in published data and world health organization.

REFERENCES

- E. Coni, A. Alimonti, A. Bocca, F. La Torre, D. Pizzuti and S. Caroli, Element Speciation in Bioinorganic Chemistry, New York: Wiley-Interscience, Chapter 8 (1996).
- P. Licata, D. Trombetta, M. Cristani, F. Giofre, D. Martino, M. Calo and F. Naccari, *Environ. Int.*, 30, 1 (2004).
- 3. P.C. Aleixo and J.A. Nobrega, Food Chem., 83, 457 (2003).
- 4. S.P. Quinaia and J.A. Nobrega, Quim. Nov., 23, 185 (2000).
- 5. E. Coni, A. Stacchini, S. Caroli and P. Falconieri, J. Anal. Atomic Spectromet., 5, 581 (1990).
- 6. S. Sturup and A. Buchert, Fresenius J. Anal. Chem., 354, 323 (1996).
- P. Vinas, N. Campillo, I. Lopez-Garcia and M. Hernandez-Cordoba, Anal. Chim. Acta, 356, 267 (1997).
- S.M. Farid, M.A. Enani and S.A. Wajid, JKAU: Eng. Sci., 15, 131 (2004).
- S.K. Aksu, A. Cetinoglu and S. Gucer, Adnan Menderes University, 285, 551 (2004).
- P. Bermejo-Barrera, A. Moreda-Pinero and A. Bermejo-Barrera, *Talanta*, 57, 969 (2001).
- P. Kalny, Z. Fijalek, A. Daszczuk and P. Ostapczuk, *Sci. Total Environ.*, 381, 99 (2007).
- O. Munoz, J.M. Bastias, M. Araya, A. Morales, C. Orellana, R. Rebolledo and D. Velez, *Food Chem. Toxicol.*, 43, 1647 (2005).
- D. Mendil, M. Tuzen, K. Yazici and M. Soylak, *Bull. Environ. Contam. Toxicol.*, 74, 190 (2005).
- 14. S.J. Huang and S.J. Jiang, Analyst, 125, 1491 (2000).
- 15. A. Wagner and J. Boman, Spectrochim. Acta B, 59, 1125 (2004).
- FAO/WHO, Codex General Standard for Contaminants and Toxins in Food and Feed, Codex Standard 193-1995, Amended 2009, 2010.