
INTRODUCTION

Half-wave potential (E1/2) is an important electrochemical

property of diverse organic compounds. This property which

is a constant characteristic for a reversible oxidation-reduction

system can be useful for predicting electrochemical properties

of other organic compounds. There are some different electro-

chemical methods, which permit the determination of the half-

wave potentials of a wide variety of organic and organometallic

compounds1,2.

Nowadays much interest is devoted to the prediction of

physicochemical properties of molecules, such as their

biological activity, chemical property, their retention on

chromatographic systems, or electrochemical property, etc.

This is usually accomplished by implementing so-called

quantitative structure-property relationship (QSPR) models,

which relate the property of interest, with a set of molecular

descriptors. These descriptors encode the chemical information

and are related to certain physicochemical properties of the

molecule3. In such studies, numerous physical properties of

molecular systems have been successfully modeled, including

boiling points, aqueous solubility and polymer properties, etc.4-

10. Quantitative structure-electrochemistry relationships have

been used to construct simple and reliable models to explain
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and predict the electrochemical behaviour of various classes

of compounds2,11-13. In such studies, quantitative structure-electro-

chemistry relationships (QSERs) for half-wave potentials (E1/2)

have been reported for different types of organic compounds14-17.

Quantitative structure-electrochemistry relationship has been

demonstrated to be a powerful tool in electrochemistry.

Application of quantitative structure-electrochemistry

relationships techniques usually requires selection of variables

to build well-fitting models. In this work we used the genetic

algorithm (GA) method for variable selection combined with

multiple linear regression (MLR).

The main aim of this work is to search for an efficient

method to build an accurate quantitative relationship between

the molecular structure and the E1/2 of the some organic comp-

ounds by genetic algorithm feature election strategy and multiple

linear regression analysis.

EXPERIMENTAL

Computer hardware and software: A Pentium IV

personal computer (CPU at 3.06 GHz) with the Windows XP

operating system was used. The geometry optimization was

performed with HyperChem. (Version 8.0 Hypercube, Inc).

For the calculation of the molecular descriptors, the Dragon

2.1 software was used. The SPSS software (Version 14, SPSS,
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Inc.) was employed for the multiple linear regression analysis,

while other calculations were performed in the MATLAB

(Version 7, Math Works, Inc.) environment.

Data set: Experimental half-wave potentials (E1/2) data

of some chlorinated organic compounds were taken from refe-

rence18 as our chosen dataset. The names of these compounds

and their experimental half-wave potentials are listed in Table-1.

The ranges of E1/2 values of these compounds are -1.10 to

-2.15. Moreover, the calculated half-wave potentials for these

compounds by GA-MLR method are tabulated in Table-1.

TABLE-1 
THE DATA SET AND THE CORRESPONDING OBSERVED  

AND PREDICTED E1/2 VALUES BY GA-MLR FOR  
THE TRAINING AND TEST SETS 

No. Compound Exp.a Predictedb 

Training set 

1 2-Chlorotoluene -2.15 -2.10 

2 3-Chlorotoluene -2.09 -2.10 

3 4-Chlorotoluene -2.10 -2.02 

4 2,3-Dichlorotoluene -1.89 -1.77 

5 2,4-Dichlorotoluene -1.88 -1.84 

6 3,4-Dichlorotoluene -1.53 -1.72 

7 2,3,4-Trichlorotoluene -1.62 -1.58 

8 2,4,5-Trichlorotoluene -1.60 -1.56 

9 2,4,6-Trichlorotoluene -1.80 -1.86 

10 2-Chloroanisol -2.04 -2.02 

11 3-Chloroanisol -2.05 -2.10 

12 4-Chloroanisol -1.81 -1.92 

13 2,3-Dichloroanisol -1.77 -1.76 

14 2,4-Dichloroanisol -1.78 -1.74 

15 3,4-Dichloroanisol -1.8 -1.74 

16 3,5-Dichloroanisol -1.49 -1.45 

17 2,3,4-Trichloroanisol -1.10 -1.13 

Test set    

1 2,4,6-Trichloroanisol -2.10 -1.80 

2 2,3,4,5-Tetrachloroanisol -1.84 -1.63 

3 2,3,4,6-Tetrachloroanisol -2.03 -1.86 

4 2,3,5,6-Tetrachloroanisol -1.51 -1.42 
aExperimental values; bGA-MLR 

 
Data handling: The chemical structure of each compo-

nent in our chosen data set was drawn using Hyperchem 8.0

(Hypercube, Inc) software package. The semi-empirical

Austin Model 1 (AM1) Hamiltonian method was applied to

optimize the corresponding 3D molecular structures. The

geometry optimization was done using Polak-Ribiere algorithm

until the root mean square gradient was 0.001 Kcal/mol.

Geometry optimization was run multiple times over a variety

of starting points for each molecule and the lowest energy

conformation was utilized for the calculation of electronic

properties. Regardless of any symmetry constraint, full

optimization of all bond lengths and angles was performed.

All calculations were accomplished at the restricted Hartree-

Fock level without any configuration interaction.

Descriptor generation: Molecular descriptors are defined

as numerical characteristics associated with chemical structures.

The molecular descriptor is the final result of a logic and mathe-

matical procedure which transforms chemical information

encoded within a symbolic representation of a molecule into

a useful number applied to correlate physical properties. The

Dragon software was used to calculate the descriptors in this

research and a total of 1481 molecular descriptors, from 18

different types of theoretical descriptors, were calculated for

each molecule. Since the values of many descriptors are

related to the bonds lengths and bonds angles etc., the chemical

structure of every molecule must be optimized before calcu-

lating its molecular descriptors. For this reason, chemical

structure of the 21 studied molecules were drawn with the

Hyperchem software and saved with the HIN extension. To

optimize the geometry of these molecules, the AM1 geometrical

optimization was applied. After optimizing the chemical

structures of all compounds, the molecular descriptors were

calculated using Dragon.

Data pretreatment:  The calculated descriptors were first

analyzed for the existence of constant or near-constant variables

and those detected were removed. In addition, to reduce

redundancy in the descriptor data matrix, probable correlations

of the descriptors with each other and with the E1/2s of the

molecules were examined and the collinear descriptors (i.e. r

> 0.9) were detected. Among the collinear descriptors, that

with the highest correlation with E1/2 was retained while

another variable was discarded from the data matrix. Then,

the remaining descriptors were collected in a pool involving

an n × m data matrix (D), where n = 21 and m = 284 are the

numbers of the compounds and the descriptors, respectively.

Genetic algorithm: Nowadays, genetic algorithm is well-

known as an interesting and the most widely employed variable

selection method that is used to solve the optimization problems

defined by fitness criteria, applying the evolution hypothesis

of Darwin and different genetic functions, i.e. cross-over and

mutation.

To select the most relevant descriptors, the evolution of

the population was simulated. The population of the first

generation was randomly selected. Each individual member

in the population was defined by a chromosome of binary

values, representing a subset of descriptors. Besides, number

of the genes at each chromosome was equal to the number of

the descriptors. A gene was given the value of 1, if its corres-

ponding descriptor was included in the subset; otherwise, it

was given the zero value. The number of the genes with the

value of 1 was kept relatively low to have a small subset of

descriptors. Consequently, the probability of generating 0 for

a gene was set greater (at least 60 %) than the value of 1. The

operators used here were cross-over and mutation. The appli-

cation probability of these operators was varied linearly with

a generation renewal (0-0.1 % for mutation and 60-90 % for

cross-over). The population size was varied between 50 and

250 for different genetic algorithm runs. For a typical run, the

evolution of the generation was stopped when 90 % of the

generations took the same fitness.

RESULTS AND DISCUSSION

For the selection of the most important descriptors, we

applied genetic algorithm as the variable selection procedure to

select only the best combinations (most relevant) for obtaining

the models with the highest predictive power by using the training

set. The five most significant descriptors according to the GA-

MLR algorithm are: Zagreb M2 index (ZM2), radial distri-

bution function-70.0/weighted by atomic van der Waals

(RDF070v), radial distribution function-80.0/weighted by
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atomic van der Waals (RDF080v), 3D-MoRSE signal 02/

weighted by atomic masses (Mor02m) and 3rd component

accessibility directional WHIM index/weighted by atomic van

der Waals volume (E3v).

To examine the relative importance as well as the contri-

bution of each descriptor in the model, the value of the mean

effect (MF) was calculated for each descriptor. This calculation

was performed with the equation given below:

∑∑

∑
β

β
=

=

=

n

i ij

m

j j

ni

1i ijj

j

d

d
MF

(2)

where, MFj represents the mean effect for the considered

descriptor j, βj is the coefficient of the descriptor j, dij stands

for the value of the target descriptors for each molecule and

lastly m is the descriptors number for the model. The mean

effect (MF) value indicates the relative importance of a descrip-

tor, compared with the other descriptors implemented in the

model. Its sign indicates the variation direction in the values

of the activities as a result of the enhancement or decrease of

the descriptor values. The mean effect values associated with

selected variables are shown in Table-2.

After the selection of the most important descriptors by

genetic algorithm, multiple linear regression was performed

to build the linear model. Good correlations with the experi-

mental E1/2 data were selected based on the squared correlation

coefficient (R2), Fisher criterion (F), squared cross-validated

correlation coefficient (Q2) and standard error (SE) of the

regression.

The following equation obtained by GA-MLR method:

E1/2 = 8.3733-330.33(ZM2)-0.0894(RDF070v) + 1.6201

(RFD080v) - 146.40 (Mor02m) + 0.1937 (E3v), Ntrain = 17,

R2
train = 0.9237, Q2

Loo = 0.8100, Q2
LGO = 0.8030, F = 26.66, Ntest

= 4, R2
test = 0.9404, R2

adj = 0.8891.

With the test set, the prediction results were also obtained.

The predicted versus observed values based on GA-MLR are

shown in Table-1. Fig. 1 shows the predicted versus observed

RI for all of the 21 compounds studied encompassing the

training set and the test set.

The results illustrated once more that the linear multiple

linear regression technique combined with a successful

variable selection procedure such as GA is adequate to generate

an efficient QSER model for predicting the E1/2 of compounds.

Furthermore, the residuals (experimental RI- predicted RI)

versus experimental RI value, obtained by the GA-MLR

modeling is shown in  Fig. 2. The distribution of the residuals

on both sides of the zero line indicates there is no systematic

error in both model.

For a more exhaustive testing of the predictive power of

the model, validation of the model was also carried out using

the LOO and the LGO cross-validation techniques on the

training set of compounds. For LOO cross-validation, a data

point is removed from the set and the model is recalculated.

The predicted RI for that point is then compared with its actual

value. This is repeated until each data point has been omitted

once. For LGO, 20 % of the data points are removed from the

dataset and the model was refitted; the predicted values for

those points were then compared with the experimental values.

Again, this is repeated until each data point has been omitted

once. The results produced by the LOO (Q2 = 0.8100) and the

LGO (Q2 = 0.8030) cross-validation tests illustrated the quality

of the obtained model.
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Fig. 1. Predicted E1/2 values by the MLR modeling vs. the experimental

E1/2 values

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1

Experimental half-wave potentials

R
e
si

d
u

a
l

Fig. 2. Plot of the residuals against the experimental values of E1/2 in the

proposed GA-MLR model

The model was further validated by applying Y-random-

ization. Several random shuffles of the Y vector (E1/2) were

performed and the low R2 and Q2 resulted values clarify that

the good results in the original model are not due to a chance

correlation or structural dependency of the training set. The

TABLE-2 
SELECTED DESCRIPTORS OF GENETIC ALGORITHM MULTIPLE LINEAR REGRESSION 

Descriptor Type of descriptor Notation Coefficient MF 

Zagreb M2 index Topological ZM2 -330.33 0.7434 

Radial Distribution Function-70.0 / weighted by atomic van der waals  RDF descriptors RDF070v -0.0894 0.4196 

Radial Distribution Function-80.0 / weighted by atomic van der waals RDF descriptors RDF080v 1.6201 0.0091 

3D-MoRSE signal 02/weighted by atomic masses 3D-MoRSE Mor02m -146.40 0.0033 

3rd component accessibility directional WHIM index/weighted by atomic 
van der waals volume 

WHIM E3v 0.1937 0.1573 

Constant   8.3733  
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results of the Y-randomization test are presented in Table-3.

High predictive ability and simplicity of the proposed method

denote it could be a powerful aid as well as a proper alternative

approach to the costly and time consuming experiments for

determining the E1/2 of other compounds.

TABLE-3 
r2 AND Q2 VALUES AFTER SEVERAL 

Y-RANDOMIZATION TESTS 

Iteration R2 Q2 

1 0.041 0.214 

2 0.266 0.022 

3 0.168 0.121 

4 0.026 0.002 

5 0.399 0.001 

6 0.204 0.054 

7 0.144 0.086 

8 0.180 0.109 

9 0.136 0.236 

10 0.207 0.273 
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