

(Received: 25 January 2013;

ASIAN JOURNAL OF CHEMISTRY

http://dx.doi.org/10.14233/ajchem.2013.15212

AJC-14357

FTIR Analysis of Burkholderia seminalis from Apricot, Water and Rice Rhizosphere

Y. FANG^{1,2}, B. LI^{2,*}, Y.L. WANG³, L.B. GUO⁴ and G.C. SUN^{3,*}

¹College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P.R. China

The present work compares isolates of *Burkholderia seminalis* from different sources with fourier transform infrared (FTIR) spectroscopy. Our results show that they present a typical *Burkholderia cepacia* complex sample spectrum, in which strong amide I and amide II bands, (at 1,656 and 1,540 cm⁻¹, respectively) were the dominant features, which were mainly due to proteins. There were significant differences in protein-to-lipid ratio, indicating significantly differences of membrane structure and dynamics of *B. seminalis* isolates from different sources.

Accepted: 11 November 2013)

Key Words: Comparative analysis, Burkholderia seminalis, Different sources, FTIR.

INTRODUCTION

Burkholderia seminalis, a member of Burkholderia cepacia complex (Bcc), is a new species recently proposed by Vanlaere et al. 1. It was first recovered from sputum of a cystic fibrosis (CF) patient as an opportunistic pathogens¹, Then it was found to be widely distributed in natural environment such as soil, water and plant rhizosphere 1-4. Recently, an causal pathogen of bacterial fruit rot of apricot in China has also been ascribed to B. seminalis^{5,6}. These findings arouse our concern that cystic fibrosis patients may acquire B. seminalis by eating contaminated foods, or environmental strains may infect plants and fruits. Therefore, it is necessary to find out the difference of B. seminalis strains from different sources. Traditional methods used for the differentiation of various Burkholderia cepacia complex microorganisms are based on fatty acid composition, carbon source utilization, 16S rDNA sequencing and recA gene sequencing⁵. However, all of these methods can often be tedious and time consuming and occasionally not conclusive³.

Recently, Fourier transform infrared (FTIR) spectroscopy has been successfully applied in bacterial identification and classification⁷⁻¹². FTIR spectroscopy is an sensitively physicochemical technique, which can detect very small alterations in bond lengths and angles in macromolecules and therefore unique molecular fingerprints can be easily distinguished from

the absorption patterns of other molecules ¹³⁻¹⁶. Moreover, FTIR spectroscopy allows the rapid analysis of small quantities of biomass, simultaneous characterization of different functional groups such as lipids, proteins, nucleic acids and polysaccharides in biological molecules and complex structures and without disturbing the systems and requires no consumables or reagents ^{14,16-18}. These findings have shown that it is possible to discriminate among various microorganisms at the genus, species and strain level.

The objective of this study was to compare FTIR spectra of bacteria from three different sources which were previously identified as *B. seminalis*.

EXPERIMENTAL

The nine strains of *B. seminalis* used in this study were isolated from diseased apricot, waters of West lake and rhizosphere of rice separately in our previous study^{2,5,6,19}.

Sample preparation: Bacterial cells were collected from overnight LB broth culture grown at 28 °C by centrifugation at 10,000 rpm for 10 min. After removing the supernatants, the bacterial pellets were washed twice with double distilled water. After second wash in double distilled water, bacterial samples were dried under vacuum for 12 h and stored at 70 °C until lyophilization. The samples for FTIR analysis were first grounded into fine particles using mortar and pestle. The 1 mg of each sample was then mixed with 100 mg potassium

²State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, P.R. China

³State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R. China

⁴State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, P.R.China

^{*}Corresponding authors: Fax: +86 571 86404225; Tel: +86 571 86404073; E-mail: libin0571@zju.edu.cn; sungc@zaas.org

10166 Fang et al. Asian J. Chem.

bromide which extensively dried in microfuge tubes using a lyophiliser. These mixtures have been dried for an additional 2 h in the same microfuge tubes.

FTIR spectroscopy and data analysis: The FTIR spectroscopy data were analyzed as previously described by Garip et al. with a small modification. Pellets were scanned at 4 cm⁻¹ resolution with 100 scans in the spectral range of 4000-500 cm⁻¹ at room temperature. The sample compartment in the FTIR spectrometer was continuously purged with dry air to prevent water vapour. Analysis of the spectral data was performed by using Grams 32 (Galactic Industries, Salem, NH, USA) software. The spectral range of 3500-800 cm⁻¹ was analyzed. The band positions were measured according to the center of weight. The averages of the spectra belonging to the same experimental groups, baseline correction, normalisation and the band areas were obtained by using the same software program. The average spectra and normalisation process were applied only for visual representation of the differences, however for the determination of the spectral parameters and calculation of mean values and statistical analysis each baseline corrected original spectrum was taken into consideration.

Statistics: The software STATGRAPHICS Plus, version 4.0 (Copyright Manugistics Inc., Rockville, Md., USA) was used to perform the statistical analysis. Levels of significance (p < 0.05) of main treatments and their interactions were calculated by analysis of variance after testing for normality and variance homogeneity.

RESULTS AND DISCUSSION

The resulting infrared spectroscopy fingerprints of *B. seminalis* isolates showed the typical complex shape of bacterial cells spectra, corresponding to the building blocks present in biological samples (nucleic acids, proteins, carbohydrates and lipids).

The average spectra of all *B. seminalis* samples present a typical *Burkholderia cepacia* complex sample spectrum

reported previously²⁰: strong amide I and amide II bands, (respectively at 1656 and 1540 cm⁻¹) were the dominant features, which were mainly due to proteins^{13,14}; the bands centered at 2962 and 2930 cm⁻¹ correspond to the stretching mode of asymmetrical CH₃ and CH₂ vibrations mainly due to lipids²¹; the prominent peak centered at 2876 cm⁻¹ was mainly due to proteins and with little contribution from lipids, carbohydrates and nucleic acids; the prominent peak centered at 2857 cm⁻¹ was mainly due to lipids. The band at 1460 cm⁻¹ correspond to the CH₂ bending mode of lipids^{7,11}; the band at around 1383 cm⁻¹ was mainly due to amino acid side chains and fatty acids. These bands around 1233 and 1060 cm⁻¹ were due to nucleic acids and glycogen^{7,15}; besides, a strong band at 1736 cm⁻¹, corresponding to the ester carbonyI stretch ν (C=O) was observed, this band corresponds to compounds of the poly-hydroxyalkanoates family (PHA) that are known to be produced by *Burkholderia* spp²².

Fig. 1 shows the average FTIR spectra of three B. seminalis isolates: Bca0901, R456 and S9. Table-1 shows the band frequencies of main functional groups in these three strains. As seen from the Fig. 1 and Table-1, they showed similar FTIR spectra. This result indicates that it's difficult to differentiate them by FTIR. Nevertheless, it was found that the protein-tolipid ratio was significantly different among these isolates (Fig. 2), which was calculated by taking the ratio of the area of the amide I band to the area of ester C=O stretching band, the area of the amide II band to the area of CH₃ asymmetric stretching band, CH₂ asymmetric stretching band and CH₂ symmetric stretching band. The ratio of protein-to-lipid in the membranes is an important factor affecting the membrane structure and dynamics²³, indicating significantly differences of membrane structure and dynamics of B. seminalis isolates from different sources. Therefore, result from this study may give a new strategy for the rapid bacterial identification and differentiation of Burkholderia cepacia complex isolates from different sources.

Fig. 1. Average spectra of three B. seminalis isolates in 3500-800 cm⁻¹ region

TABLE-1			
BAND FREQUENCIES OF VARIOUS FUNCTIONAL GROUPS IN THREE B. seminalis STRAINS OF DIFFERENT SOURCES			
Functional groups ^a —	Frequency (cm ⁻¹) ^b		
	Bca0901	R456	S9
CH ₃ asymmetric stretching	2962.28 ± 0.00	2962.28 ± 0.00	2962.28 ± 0.00
CH ₂ asymmetric stretching	2930.25 ± 0.00	2930.25 ± 0.00	2930.25 ± 0.00
CH ₃ symmetric stretching	2875.80 ± 0.00	28750.8 ± 0.00	28750.8 ± 0.00
CH ₂ symmetric stretching	2856.58 ± 0.00	2856.58 ± 0.00	2856.58 ± 0.00
Ester C=O stretching	1735.59 ± 0.00	1735.59 ± 0.00	1735.59 ± 0.00
Amide I	1655.51 ± 0.01	1655.51 ± 0.00	1655.52 ± 0.01
Amide II	1540.21 ± 0.00	1540.21 ± 0.00	1540.21 ± 0.00
CH ₂ bending	1460.14 ± 0.00	1460.14 ± 0.00	1460.14 ± 0.00
COO ⁻ symmetric stretching	1385.41 ± 1.85	1383.27 ± 0.00	1383.27 ± 0.00
PO ₂ ⁻ asymmetric stretching	1233.82 ± 1.87	1232.74 ± 0.00	1232.74 ± 0.00
PO ₂ ⁻ symmetric stretching	1059.78 ± 0.01	1059.78 ± 0.01	1059.78 ± 0.00
^a Adapted from references ^{15,16,24} . ^b The experiment was performed trice and data from the repeated experiment were pooled.			

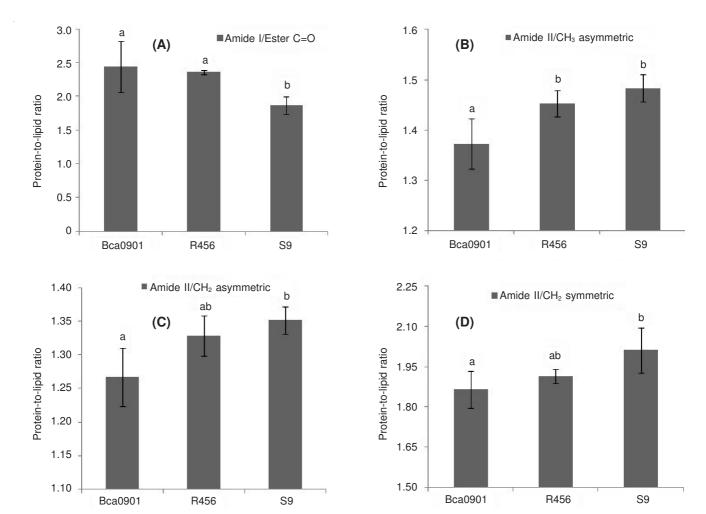


Fig. 2. Protein-to-lipid ratio of three *B. seminalis* isolates. The experiment was performed thrice and data from the repeated experiment were pooled. Means in a column followed by the same letter are not significantly different according to LSD test (p = 0.05)

ACKNOWLEDGEMENTS

This project was supported by the Zhejiang Provincial Education Department Funds (Y201225664), Zhejiang Normal University Funds (KYJ06Y11006 and ZC304013019), the Fundamental Research Funds for the Central Universities, the Agricultural Ministry of China (nyhyzx 201003029; 20100-3066; 201303015), National Natural Science Foundation of China (31371904;31271700); Zhejiang Provincial Natural

Science Foundation of China (R13C140001;LQ13C140001); Open Foundation from Top Key Discipline of Mordern Agricultural Biotechnology, Biological Control of Crop Diseases in Zhejiang Provincial Colleges (ZC323012040) and State Education Ministry and Key Subject Construction Program of Zhejiang for Modern Agricultural Biotechnology and Crop Disease Control (2010DS700124-KF1101; 2010DS700124-KF1203 and 2010DS700124-KF1309).

10168 Fang et al. Asian J. Chem.

REFERENCES

- E. Vanlaere, J.J. LiPuma, A. Baldwin, D. Henry, E.D. Brandt, E. Mahenthiralingam, D.P. Speert, C. Dowson and P. Vandamme, *Int. J. Syst. Evol. Microbiol.*, 58, 1580 (2008).
- Y. Fang, G.L. Xie, M.M. Lou, B. Li and and I. Muhammad, J. Microbiol., 49, 309 (2011).
- B. Li, B.P. Liu, R.R. Yu, M.M. Lou, Y.L. Wang, G.L. Xie, H.Y. Li and G.C. Sun, World J. Microbiol. Biotechnol., 27, 2305 (2011).
- B. Li, Y. Fang, C.L. Shan, M. Ibrahim, G.L. Xie, Y.L. Wang and G.C. Sun, *Asian J. Chem.*, 25, 891 (2013).
- Y. Fang, B. Li, F. Wang, B.P. Liu, Z.Y. Wu, T. Su, W. Qiu and G.L. Xie, Plant Pathol. J., 25, 429 (2009).
- B. Li, Y. Fang, G.Q. Zhang, R.R. Yu, M.M. Lou, G.L. Xie, Y.L. Wang and G.C. Sun, *Plant Pathol. J.*, 26, 223 (2010).
- S. Garip, G.A. Cetin and F. Severcan, Food Chem., 113, 1301 (2009).
- 8. J. Samelis, A. Bleicher, C. Delbes-Paus, A. Kakouri, K. Neuhaus and M.C. Montel, *Food Microbiol.*, **28**, 76 (2011).
- J. Wang, K.H. Kim, S. Kim, Y.S. Kim, Q.X. Li and S. Jun, *Int. J. Food Microbiol.*, 144, 147 (2010).
- Y. Wang, Q. Zhou, B. Li, B. Liu, G. Wu, M. Ibrahim and G. Xie, H. Li and G. Sun, *BMC Microbiol.*, 12, 182 (2012).
- D.C. Vodnar, C. Socaciu, A.M. Rotar and A. Stanila, *Int. J. Food Sci. Technol.*, 45, 2345 (2010).

- 12. N. Rajasulochana and S. Gunasekaran, Asian J. Chem., 21, 4547 (2009).
- G. Cakmak, I. Togan, C. Uguz and F. Severcan, Appl. Spectrosc., 57, 835 (2003).
- A. Dogan, K. Ergen, F. Budak and F. Severcan, Appl. Spectrosc., 61, 199 (2007).
- 15. S. Garip, F. Bozoglu and F. Severcan, Appl. Spectrosc., 61, 186 (2007).
- A.M. Melin, A. Allery, A. Perromat, C. Bébéar, G. Déléris and B. de Barbeyrac, J. Microbiol. Meth., 56, 73 (2004).
- 17. O. Bozkurt, M.D. Bilgin and F. Severcan, Spectroscopy, 21, 151 (2007).
- N. Toyran, B. Turan and F. Severcan, *Arch. Biochem. Biophys.*, 458, 184 (2007).
- 19. L.X. Zhang and G.L. Xie, FEMS Microbiol. Lett., 266, 231 (2007).
- C.P. Coutinho, I. Sá-Correia and J.A. Lopes, *Anal. Bioanal. Chem.*, 394, 2161 (2009).
- J.R. Mourant, Y.R. Yamada, S. Carpenter, L.R. Dominique and J.P. Freyer, *Biophys. J.*, 85, 1938 (2003).
- F.K. Young, J.R. Kastner and S.W. May, *Appl. Environ. Microbiol.*, **60**, 4195 (1994).
- B. Szalontai, Y. Nishiyama, Z. Gombos and N. Murata, *Biochim. Biophys. Acta*, 1509, 409 (2000).
- 24. A. Dogan, G. Siyakus and F. Severcan, Food Chem., 100, 1106 (2007).