

Microwave-Assistant Synthesis, Crystal Structure and Fungicidal Activity of 3-Chloro-2-hydrazinylpyridine

WEI KE¹, NA-BO SUN¹ and HONG-KE WU^{2,*}

¹College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang Pronvince, P.R. China ²College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, P.R. China

*Corresponding author: E-mail: wuhk910@gmail.com

(<i>Received</i> : 13 February 2013;	
---------------------------------------	--

Accepted: 26 August 2013)

AJC-14031

A pyridine derivative *i.e.*, 3-chloro-2-hydrazinylpyridine ($C_5H_6N_3Cl$) was synthesized under microwave irradiation and its structure was studied by X-ray diffraction and ¹H NMR. The crystals are monoclinic, space group p_{21}/c with a = 11.6276 (14), b = 3.8924 (5), c = 13.9558 (17) Å, $\alpha = 90.00$, $\beta = 103.447$ (6), $\gamma = 90.00^\circ$, $V = 614.31(13)Å^3$, Z = 4, $F_{(000)} = 296$, $D_c = 1.552g/cm^3$, $\mu = 0.52$ cm⁻¹, the final R = 0.0623 and wR = 0.1897. A total of 7008 reflections were collected, of which 1406 were independent ($R_{int} = 0.0544$). The fungicidal activity of this compound was also studied.

Key Words: Microwave assistant synthesis, Crystal structure, Biological activity.

INTRODUCTION

In recent years, heterocyclic compounds had received considerable attentions because of their important biological activity¹. So the synthesis of broader spectrum and highly bioactive compounds becomes the mainstream in the medicinal and agriculture chemistry field². Pyridine derivatives also exhibited excellent property, such as nicotinate mononucleotide adenylyltransferase inhibitor³, antifungal activity⁴, antiinflammatory activity⁵, antimicrobial activities⁶, anticancer activity⁷, antiviral activity⁸, cholesterol absorption inhibitors⁹. Microwave technique has been widely used for a variety of organic reactions, such as Claisen, heterocyclic synthesis, oxidation, hydrolysis, esterification, etc.

In order to search for new compounds with good biological activity, a pyridine compound was synthesized under microwave irradiation. Their structures are confirmed by ¹H NMR and single crystal. The preliminary biological tests show that these compounds had moderate fungicidal activity.

EXPERIMENTAL

Melting points determined by a Yanaco MP-241 apparatus and uncorrected. Infrared spectra were recorded on a Bruker Equinox55 spectrophotometer as KBr tablets. ¹H NMR spectra were measured on a Bruker AC-P500 instrument (300 MHz) using TMS as internal standard and CDCl₃ as solvent. Crystallographic data of the compound collected on a BRUCKER CCD SMART diffractometer. All chemicals were of AR grade.

Crystal structure determination: The crystal of 3-chloro-2-hydrazinylpyridine with dimensions of 0.12 mm \times 0.08 mm × 0.06 mm was mounted on a Rigaku Saturn CCD areadetector diffractometer with a graphite-monochromated MoK_{α} radiation ($\lambda = 0.71073$ Å) by using a phi and scan modes at 294(2) K in the range of $3.1^{\circ} \le \theta \le 27.7^{\circ}$. The crystal belongs to monoclinic system with space group P21/C and crystal parameters of a = 11.6276(14) Å, b = 3.8924(5) Å, c = 13.9558(17) Å, $\alpha = 90^{\circ} \beta = 103.447(6)^{\circ}$, $\gamma = 90^{\circ}$, V = $614.31(13) \text{ A}^3 \text{ D}_c = 1.552 \text{ g/cm}^3$. The absorption coefficient μ = 0.520 mm^{-1} and Z = 4. The structure was solved by direct methods with SHELXS-97 and refined by the full-matrix least squares method on F² data using SHELXL-97. The empirical absorption corrections were applied to all intensity data. H atom of N-H was initially located in a difference Fourier map and were refined with the restraint Uiso(H) = 1.2Ueq(N). Other H atoms were positioned geometrically and refined using a riding model, with d(C-H) = 0.93-0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(Cmethyl). The final full-matrix least squares refinement gave R = 0.0623 and wR = 0.1897.

Synthesis: A modified two-phase procedure was applied. 2,3-Dichloropyridine (0.2 mol), hydrazine hydrate (85 %, 1 mol) were put in a sealed vial, then refluxed at 100 °C for 0.5 h under microwave irradiation. The product was obtained after filtrated. ¹H NMR (CDCl₃, 400 MHz): 3.97 (br. s, 2H, NH₂), 6.21 (br. s, 1H, NH), 6.64 (m, 1H, pyridyl-H), 7.47 (d, 1H, J = 7.6 Hz, pyridyl-H), 8.09 (d, 1H, J = 4.9 Hz, pyridyl-H).

Scheme-I: Synthesis route of 3-chloro-2-hydrazinylpyridine

RESULTS AND DISCUSSION

Synthesis and spectroscopic properties: The title compound was synthesized under conventional and microwave irradiation condition. If the title compound was synthesized under refluxing, it should react with ethanolic solution of NH₂NH₂ for 72 h. Surprisingly, it was synthesized for 0.5 h under microwave irradiation. ¹H NMR spectrum of the title compound tested shows 3.97 and 6.21 is the peak of NH₂ and NH, respectively. The 6.647.478.09 can be assigned to the three CH of pyridine. The melting point is according to the reference.

Structure of the title compound: Crystallographic and refinement parameters are given in Table-1. The selected bond lengths and bond angles listed in Tables 2-4, respectively. The structure was solved by direct methods. Anisotropic displacement parameters were applied to all nonhydrogen atoms in full-matrix least-square refinements based on F^2 . The hydrogen atoms were set in calculated positions with a common fixed isotropic thermal parameter.

ТАВ	IF-1		
CRYSTAL DATA AND STRUCTURE			
REFINEMENT FOR TH	HE TITLE COMPOUND		
Items	Values		
Empirical formula	C ₅ H ₆ N ₃ Cl		
Formula weight	143.58		
Crystal system	monoclinic		
Space group	p21/c		
Unit cell dimensions			
a (Å)	11.6276(14)		
b (Å)	3.8924(5)		
c (Å)	13.9558(17)		
Unit cell	angles (°)		
α	90		
β	103.447(6)		
γ	90		
Volume (Å ³)	614.31(13)		
Z	4		
Temperature (K)	296(2)		
Wavelength (Å)	0.71073		
Calculated density (g/cm ³)	1.552		
Absorption coefficient (mm ⁻¹)	0.520		
F ₍₀₀₀₎	296		
Theta range for data collection (°)	1.80-27.72		
Reflections collected	7008		
Independent reflections	$1406 [R_{(int)} = 0.0544]$		
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0623, wR_2 = 0.1897$		

The molecular structure and atom labels are shown in Fig. 1. The one-dimensional linework of hydrogen bonds (dashed lines) is illustrated in Fig. 2, respectively.

In Table-3, the results indicate that the lengths of three C-N bond C5-N3, C1-N2 and N3-C1 are 1.348(5), 1.365(4) and 1.335(4) Å, respectively, which are all longer than those in the single heterocycle ring. However, the C5-N3, C1-N2

TABLE-2				
SELECTED BOND LENGTHS [Å] FOR THE TITLE COMPOUND				
Bond lengths	X-Ray crystal	Bond lengths	X-Ray crystal	
Cl(1)-C(2)	1.740(3)	N(2)-H(2A)	0.86	
N(3)-C(1)	1.335(4)	C(2)-C(3)	1.357(5)	
N(3)-C(5)	1.348(5)	C(4)-C(5)	1.369(6)	
N(1)-N(2)	1.403(4)	C(4)-C(3)	1.389(6)	
N(1)-H(1A)	0.86	C(4)-H(4A)	0.93	
N(1)-H(1B)	0.86	C(5)-H(5A)	0.93	
C(1)-N(2)	1.365(4)	C(3)-H(3A)	0.93	
C(1)-C(2)	1.412(4)	-	-	

TABLE-3				
SELECTED BOND ANGLES [°] FOR THE TITLE COMPOUND				
Bond	X-Ray	Bond	X-Ray	
angles	crystal	angles	crystal	
C(1)-N(3)-C(5)	118.1(3)	C(3)-C(2)-Cl(1)	120.9(3)	
N(2)-N(1)-H(1A)	120	C(1)-C(2)-Cl(1)	118.6(2)	
N(2)-N(1)-H(1B)	120	C(5)-C(4)-C(3)	118.4(3)	
H(1A)-N(1)-H(1B)	120	C(5)-C(4)-H(4A)	120.8	
N(3)-C(1)-N(2)	118.4(3)	C(3)-C(4)-H(4A)	120.8	
N(3)-C(1)-C(2)	120.7(3)	N(3)-C(5)-C(4)	123.8(3)	
N(2)-C(1)-C(2)	121.0(3)	N(3)-C(5)-H(5A)	118.1	
C(1)-N(2)-N(1)	121.5(3)	C(4)-C(5)-H(5A)	118.1	
C(1)-N(2)-H(2A)	119.3	C(2)-C(3)-C(4)	118.6(3)	
N(1)-N(2)-H(2A)	119.3	C(2)-C(3)-H(3A)	120.7	
C(3)-C(2)-C(1)	120.5(3)	C(4)-C(3)-H(3A)	120.7	

TABLE-4			
SELECTED BOND ANGLES [°] TORSIONAL			
ANGELS (°) FOR THE TITLE COMPOUND			
Bond angles	X-Ray crystal		
C(5)-N(3)-C(1)-N(2)	-177.6(3)		
C(5)-N(3)-C(1)-C(2)	0.4(5)		
N(3)-C(1)-N(2)-N(1)	-9.2(5)		
C(2)-C(1)-N(2)-N(1)	172.8(3)		
N(3)-C(1)-C(2)-C(3)	-0.3(5)		
N(2)-C(1)-C(2)-C(3)	177.7(3)		
N(3)-C(1)-C(2)-Cl(1)	178.4(3)		
N(2)-C(1)-C(2)-Cl(1)	-3.6(5)		
C(1)-N(3)-C(5)-C(4)	-0.1(5)		
C(3)-C(4)-C(5)-N(3)	-0.3(6)		
C(1)-C(2)-C(3)-C(4)	-0.2(6)		
Cl(1)-C(2)-C(3)-C(4)	-178.8(3)		
C(5)-C(4)-C(3)-C(2)	0.5(6)		

Fig. 1. Molecular structure of 3-chloro-2-hydrazinylpyridine

Fig. 2. The two-dimensional network of hydrogen bonds (dashed lines)

and N3-C1 are longer than the general C=N double bond length of 1.27 Å. The N1-N2 bond lengths is 1.403(4) Å. The bond angles of pyridine ring vary from 118.4(3) to 121.5(3)° with the average of 120°.

The title compound has an extensive network of hydrogen bonding involving the two acceptor atoms N. In the ac plane, they are linked together by N(1)-H(1C)···N(2)# 2, N(1)-H(1B)···N(3)# 2 hydrogen bonds. This hydrogen-bonding sequence is repeated to form a ring. The ring has two N atoms at the vertices, leading to a hydrogen-bond network defining cyclic motifs denoted $R_2^2(6)$. The vertices are shared with neighbouring decagon to form an infinite two-dimensional network of hydrogen bonds in the ac plane.

Bioassay of fungicidal activities: Fungicidal activity of title compounds against *Gibberella zeae* (Schwein.) Petch., *Alternaria solani* (Ellis et Martin) Jones et Grout., *Cercospora arachidicola, Botryosphaeria berengeriana* f.sp. *piricola* (Nose) koganezawa et Sakuma, *Fusarium oxysporum* f.sp. *cucumerinum*, were determined according the reference. At the dose of 50 µg/mL, the title compounds display moderate fungicidal activity against *Gibberella zeae* (Schwein.) Petch. (32 %), *Alternaria solani* (Ellis et Martin) Jones et Grout. (44 %), *Cercospora arachidicola* (18 %), *Botryosphaeria berengeriana* f.sp. *piricola* (Nose) koganezawa et Sakuma (51 %), *Fusarium oxysporum* f.sp. *cucumerinum* (21 %), respectively.

REFERENCES

(a). X.H. Liu, C.X. Tan and J.Q. Weng, *Asian J. Chem.*, 23, 4064 (2011);
(b). X.H. Liu, C.X. Tan and J.Q. Weng, *Phosphorus Sulfur Silicon Rel. Elem.*, 186, 552 (2011);
(c). X.H. Liu, J.Q. Weng, C.X. Tan, L. Pan,

B.L. Wang and Z.M. Li, Asian J. Chem., 23, 4031 (2011); (d). C.X. Tan, Y.X. Shi, J.Q. Weng, X. H. Liu, B.J. Li and W.G. Zhao, Lett. Drug Des. Discov., 9, 431 (2012); (e). J.Y. Tong, Y.X. Shi, X.H. Liu, N.B. Sun and B.J. Li, Chin. J. Org. Chem., 32, 2373 (2012); (f). X.H. Liu, W.G. Zhao, B.L. Wang and Z.M. Li, Res. Chem. Intermed., 38, 1999 (2012); (g). N.N. Su, Y. Li, S.J. Yu X. Zhang, X.H. Liu and W.G. Zhao, Res. Chem. Intermed., 39, 759(2012); (h. X.H.Liu, L. Pan, Y. Ma, J.Q. Weng, C.X. Tan, Y.H. Li, Y.X. Shi, B.J. Li, Z.M. Li and Y.G. Zhang, Chem. Biol. Drug Des., 78, 689 (2011); (i). X.H. Liu, J.Q. Weng, B.L. Wang, Y.H. Li, C.X. Tan and Z.M. Li, Res. Chem. Intermed., DOI: 10.1007/s11164-013-1113-4 (2013); (j) J.Y. Tong, N.B. Sun and H.K. Wu, J. Chem. Soc. Pak., 34, 1300 (2012); (k). N.B. Sun, J.Z. Jin, C. Lei and W. Ke, Asian J. Chem., 25, 4067(2013).

- 2. (a) Y.L. Xue, Y.G. Zhang and X.H. Liu, Asian J. Chem., 24, 3016 (2012); (b) P.Q. Chen, C.X. Tan, J.Q. Weng and X.H. Liu, Asian J. Chem., 24, 2808 (2012); (c) Y.L. Xue, Y.G. Zhang and X.H. Liu, Asian J. Chem., 24, 1571 (2012); (d) Y.L. Xue, Y.G. Zhang and X.H. Liu, Asian J. Chem., 24, 5087 (2012); (e) X.F. Liu and X.H. Liu, Acta Cryst., E67, o202 (2011); (f) X.H. Liu, L. Pan, C.X. Tan, J.Q. Weng, B.L. Wang and Z.M. Li, Pestic. Biochem. Physiol., 101, 143 (2011); (g) X.H. Liu, J.Q. Weng, C.X. Tan and H.J. Liu, Acta Cryst., E68, 0493 (2012); (h). H.J. Liu, J.Q. Weng, C.X. Tan and X.H. Liu, Acta Cryst., E67, o1940 (2011); (i). X.H. Liu, C.X. Tan and J.Q. Weng, Phosphorus Sulfur Silicon Rel. Elem., 186, 558 (2011); (j) C.X. Tan, J.Q. Weng, Z.X. Liu, X.H. Liu and W.G. Zhao, Phosphorus Sulfur Silicon Rel. Elem., 187, 990 (2012); (k) J.Q. Weng, L. Wang and X.H. Liu, J. Chem. Soc. Pak., 34, 1248 (2012); (l) X.H. Liu, L. Pan, J.Q. Weng, C.X. Tan, Y.H. Li, B.L. Wang and Z.M. Li, Mol. Divers., 16, 251 (2012); (m) R.Wu, C. Zhu, X.J. Du, L.X. Xiong, S.J. Yu, X.H. Liu, Z.M. Li and W.G. Zhao, Chem. Cent. J., 6, 99 (2012); (n) X.H. Liu, J.Q. Weng and C.X. Tan, J. Chem., Article ID 306361 (2013); (o) X.F. Liu, X.W. Xiao and X.H. Liu, Chin. J. Struct. Chem., 30, 1437 (2011).
- A.A. Salarian, A. Asadi-Eskandar, A. Sakhteman and K. Abdi, *Asian J. Chem.*, 25, 1275 (2013).
- (a) S.V. Rao, D. Komali, S.K. Ameer, S.D.V.V.S.S. Raju and K.N. Reddy, *Asian J. Chem.*, **24**, 3203 (2012); (b) S. Karabocek, E. Senses, N. Karabocek and S.A. Karaoglu, *Asian J. Chem.*, **24**, 188 (2012).
- 5. M.E.B. Rao and V.G. Rajurkar, Asian J. Chem., 23, 2648 (2011).
- (a) B. Kumar, K.K. Prasad and S.K. Srivastava, Asian J. Chem., 23, 1680 (2011); (b) S. Benhammadi, A.A. Othman, A. Derdour and A. Mami, Asian J. Chem., 22, 5535 (2010); (c) V. Judge, B. Narasimhan, M. Ahuja, D. Sriram and P. Yogeeswari, Lett. Drug Des. Discov., 8, 792 (2011).
- F.A. Bassyouni, H.A. Tawfik, A.M. Soliman and M.A. Rehim, *Res. Chem. Intermed.*, 38, 1291(2012).
- E.M. El-Telbani, S.M. Ghanem, F.A. El-Essawy and A.F. El-Sayed, Lett. Drug Des. Discov., 8, 822 (2011).
- 9. Y.B. Wang, Haiquan, W.L. Huang, H.B. Zhang and J.P. Zhou, *Lett. Drug Des. Discov.*, **8**, 500 (2011).