
INTRODUCTION

Remote sensing is an important tool in agriculture and

soil evaluation, contributing to the collection novel information

as a non-destructive, quick and low-cost technique1.

Many conventional soil analytical techniques are used in

an attempt to establish the relationship between soil physical

and chemical properties and individual soil components, often

disregarding their complex, multi-component interactions2.

Standard procedures for measuring soil properties being

time-consuming and expensive, much attention is given to

possible alternatives such as near infrared reflectance spec-

troscopy (NIRS). Near infrared reflectance spectroscopy is a

non-destructive analytical technique for studying interactions

between incident light and a material's surface3. Near infrared

reflectance spectroscopy is a physical non-destructive, rapid,

reproducible and low-cost method that characterizes materials

according to their reflectance in the wavelength range between

350 and 2500 nm2,4-7.

Infrared spectroscopy in the near and mid-infrared ranges

has been found to be useful in providing rapid, cheap and

relatively accurate predictions for a number of soil properties2,4-7.
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The main objective of this study is to evaluate the ability of visible near-infrared reflectance spectroscopy (VNIRS) to predict diverse soil

chemical properties in grinding different particular size effect. In this study, 60 soil samples were collected from the fields with serial

classification (entisols, inceptisols, vertisols and mollisols) in Isparta (Atabey) district and crushed samples were subjected into five

different mesh sizes (4.76-2.00, 2.00-1.00, 1.00-0.50, 0.5-0.25 and < 0.25 mm, respectively). Each soil samples were scanned with a

visible near-infrared spectrometer, with a spectral range of 350 to 2500 nm, at five different particular sizes. The spectral reflectance's

were used to predict some chemical properties of the soil (lime, sum of organic matter, cation exchange capacity, exchangeable calcium

+ magnesium, exchangeable potassium, exchangeable sodium) using partial least squares regression. Partial least squares analysis was

used to develop calibration models between smoothed-first derivative 6 nm spaced spectral reflectance data and soil chemical analysis

measured lime, sum of organic matter, cation exchange capacity, exchangeable calcium + magnesium, exchangeable potassium,

exchangeable sodium. The results showed that while soils need to be crushed to pass through 0.25 mm sieve in order to determine

exchangeable calcium + magnesium, exchangeable sodium, mesh size was found non-significant in determining lime, sum of organic

matter, cation exchange capacity, exchangeable potassium and the results obtained from the reflectance values taken from field samplings

proved to be satisfactory.
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Many studies have focused on measuring soil properties

using NIRS2-4,8,9. These studies proved that soil chemical prop-

erties can be predicted well or satisfactorily by NIRS. However,

reflectance spectra are strongly affected by the contents of

soil moisture, organic matter and iron, texture, structure and

particle size. The effect of MC on soil spectra was highlighted

by Mouazen et al.10, without quantifying this effect on the

prediction of other soil properties. Chang et al.3 used 8 mm

sieve with sifted 802 soils samples by using NIRS scatterings.

The authors concluded that cation-exchange capacity (CEC),

was successfully predicted by NIRS (R2 > 0.80). A NIR soil

sensor in surface and subsurface soils was used for predict of

soil organic matter contents by Hummel et al.11. Standard errors

of prediction for organic matter were 0.62. While it was suggested

by Fystro12 that grinding the samples did not improve the

prediction accuracy, Dalal and Henry13, Reeves et al.14 and

Russell15 pointed out that particle size of soils plays a signifi-

cant role in organic carbon contents.

The accurate sensing and determination of characteristics

concentration in soil samples using spectral measurements are

dependent upon the condition of soil sample, instrument and
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environment. The condition of soil sample includes soil type,

particle size and moisture content. The reflectance spectra of

the soil samples are influenced by soil particle size and struc-

ture. Elimination of these effects requires a calibration model

to remove the effects of soil particle size and structure. The

effectiveness of iron and organic matter on the reflection

measurements can be eliminated using different methods. But

the effects of soil structure on the reflections are not considered.

Therefore, this study is aimed to evaluate the ability of visible

near-infrared reflectance spectroscopy (VNIRS) to predict

diverse soil chemical properties in grinding different particular

size effect.

EXPERIMENTAL

Field sites and sampling: The fields were located in

Isparta Atabey district (37º52′30″N; 30º00′00″E) in Turkey.

In Isparta, the mean annual temperature is 12.4 ºC with monthly

means between 1.6 ºC January and 23.8 ºC July and annual

rainfall 524 mm, three-fourth occurring during the warm season

(June to September)16. The soil was entisol, inceptisol, mollisol

and vertisol according to the USDA soil taxonomy16,17.

Sixty (n = 60) soil samples were collected from Atabey

district in 2008. The soils were sampled at surface (0-30 cm).

Before scanning, samples were air-dried and crushed. The

samples were graded into five particle sizes (4.76-2.00, 2.00-

1.00, 1.00-0.50, 0.50-0.25, < 0.25 mm diameter, respectively)

using sieves.

Soil samples were oven dried at 40 ºC, ground and sieved

to obtain the < 2 mm fraction. The calcimeter method (lime)18,19

was used to measure the carbonate concentration in the soil.

Organic matter (SOM) was determined by a modification of

the Walkley and Black's titration method as outlined by Nelson

and Sommers19. Cation exchange capacity (CEC) was deter-

mined with 1 N Na-acetate at pH 8.2 exchangeable bases were

extracted with 1 N NH acetate at pH 7.0 and measured by

atomic absorption spectroscopy Na and K. Exchangeable Mg

and exchangeable Ca, cation exchange capacity were deter-

mined by subtracting the exchangeable Na and K cation20,21.

Near-infrared reflectance spectroscopy scanning and

data analysis: The soil samples were scanned using an ASD

FieldSpec Pro FR VNIR spectroradiometer with a spectral

range of 350 to 2500 nm, 1 nm sampling resolution. The

spectroradiometer was equipped with a contact probe. The

contact probe has a viewing area defined by a 2 cm diameter

circle and its own light source. A spectralon panel with 99 %

reflectance was used to optimize the spectrometer each day.

The same panel was used as a white reference before scanning

each sample. The air-dried surface soils were scanned from

below with an ASD mug lamp connected to the FieldSpec Pro

FR. A spectralon 99 % reflectance panel was used to optimize.

Approximately 20 g of surface soil was placed into a Duraplan

borosilicate optical-glass Petri dish. Each sample was scanned

three times with a 90º rotation between scans.

Reflectance spectra of different particular size soil samples

were measured in UV, VIS and NIR regions between 350 and

2500 nm with a sampling interval of 1 nm. The initial spectral

data ranged from 350 to 2500 nm, but because of low signal-

to-noise ratios at the ends of the spectra, only data in the 400

to 2440 nm range (6 nm spacing-341 data points) were

included in the analyses. The spectral reflectance data were

normalized by dividing each reflectance value by the mean

reflectance of the 341 bands within each spectrum, creating a

second data set with a mean of 1. These data were also trans-

formed to normalization. Then, the first derivative of spectra

is computed to reveal information hidden in the spectra and

also to reduce baseline drift. Smoothing the optical signal with

derivative filters (Savistky-Golay) can help to lessen spectral

noise as well as scattering corrections like multiplicative

scatter correction (MSC) or standard normal variety (SNV)

correction. After pretreatment, statistical tools relevant to the

aim of the analysis were implemented to analyze spectral data.

Calibration development and soil property estimation were

accomplished with partial least squares regression (PLS) tech-

niques implemented in the PC-based Unscrambler software

9.7 (CAMO A/S, Trondheim, Norway). Correlations of the

normalized soil spectra and physical property data were

accomplished using step-wise multiple linear regressions for

the overall dataset.

Near-infrared reflectance spectroscopy prediction for

soil properties: The size, shape and arrangement of particles

in a sample can affect the path of light transmission and the

reflectance spectra, as such NIR spectra are assumed to exhibit

a primary response to soil texture and structure. Soil particle-

size distribution and macroaggregation exhibited a unique

spectral response to incident light22.

Instruments operating in the NIR region (700-2500 nm)

must be calibrated before they can be used. Because of the

complex nature of NIR spectral data, the instrument must be

calibrated on a series of natural samples representative of the

population to be measured. The calibration was performed

using partial least square. Multivariate algorithms are often

used to compress the dimension of the problem and to reduce

multicollinearity in NIR data. Spectra are normally preprocessed

before calibration to remove or reduce effects not related to

the chemical absorption of light. Often used treatments are

multiplicative scatter correction, standard normal variety transfor-

mation, standard normal variety transformation combined with

Detrend and first or second derivatives23. In this study, the

results indicate that the first derivative spectra provide more

effective information for selecting similar samples.

RESULTS AND DISCUSSION

Soil properties: The percentage of lime in the samples

ranged from 0.20 to 25.40 % (Table-1). Values for sum of

organic matter were between 0.94 and 2.40 %, cation exchange

capacity (CEC), exchangeable Ca + Mg, exchangeable K and

exchangeable Na, 7.20-36.25, 6.60-35.05, 0.23-1.85, 0.50-1.52

(me/100g) concentrations in the range, respectively.

Prediction of soil chemical properties: According to PLS

analysis results to estimate the lime contents, the high R2 value

was found to be 0.84 in validation (RMSE = 2.95) for soil set

of the 0.250 mm sieve. But in all sieve groups, obtaining R2

value between 0.81-0.84 in all mesh sizes revealed that sieve

size was not significant in determining lime (Table-2). In the

NIR the average R2 value for prediction of soil lime has been

reported to be 0.6924, in the middle infrared reflectance spec-
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TABLE-1 
LABORATORY RESULTS FROM  

CHEMICAL ANALYSIS 

Parameter Mean Range SEd 

Lime (%) 7.92 (7.33)e 0.20-25.40 0.95 

SOMa (%)  1.69(0.47) 0.94-2.40 0.06 

CECb (meq/100 g) 18.61(7.43) 7.20-36.25 0.96 

Excc. Ca + Mg (meq/100 g)  17.49(7.22) 6.60-35.05 0.93 

Exc. K (meq/100 g) 0.98(0.42) 0.23-1.85 0.05 

Exc. Na (meq/100 g)  0.85(0.22) 0.50-1.52 0.03 
aSum of organic matter; bCation exchangable capacity; cExchangable; 
dStandard error; eParentheses: indicate standard deviation. 

 
troscopy (MIR) 0.9525. Results showed that the reflectance

values obtained from field samples or sieved samples (mesh

size 4.76 mm) can be used to estimated lime contents.

Partial least squares analysis according to SOM, the best

estimate in the soil set of the 4.76 mm sieve was found as R2 =

0.90 in validation (RMSE = 2.29). However, all sieve groups

outside in 0.250 mm sieve the soil samples of the reflection

with the highest values (0.83-0.80) were obtained validation.

Therefore, the overall size (except for 0.250 mm) to obtain

sieve size is important in determining SOM. Similarly, Daniel

et al.26 laboratory calibrations of soil reflectance data collected

with NIR spectroscopy (400-1100 nm) yielded an R2 of 0.86

for 41 soil samples. But, in the NIR region by multiple regre-

ssion analysis (1000-2500 nm) the average R2 value for

prediction of soil organic matter has been reported to be 0.5524,

in the VIS-NIR by stepwise multiple linear regression (400-

2400 nm) 0.65.

Several soil properties that do not have a primary response

in the near-infrared region, such as CEC and exchangeable

cations, were accurately predicted by the NIRS-PCR. Correla-

tion of these properties with soil organic matter and clay

content may explain some of this effect3. According to PLS

analysis results to estimate the CEC, the high R2 value was

found to be 0.51 in validation (RMSE = 0.29). But in all sieve

groups, obtaining R2 value between 0.37-0.51 in all mesh sizes

revealed that crushing degree was not significant in determi-

ning CEC (Table-2). In the NIR the average R2 value for

prediction of soil CEC has been reported to be 0.813. Chang

et al.27, before NIRS scattering, samples through a 2 mm sieve.

Authors indicated that NIRS-PLSR was able to predict CEC

with reasonable accuracy for both the air-dried (R2 > 0.76)

and moist (R2 > 0.74) soils. Other authors indicated that different

spectral region (MIR, NIR, VIS-NIR and UV-VIS-NIR) and

different multivariate methods (PLSR, MRA, PCR and MARS)

were able to average R2 value for prediction of soil CEC has

been reported to be 0.88, 0.67, 0.88, 0.645,28,29,28, respectively.

Cation exchange capacity of the exchangeable cations as

well as indirectly determined by near infrared reflectance spectro-

scopy. According to PLS analysis results to estimate the

exchangable Ca + Mg, exchangable K and exchangable Na

the high R2 value was found to be 0.91, 0.84 and 0.98, respec-

tively in validation (RMSE = 0.07, 2.95, 0.07, respectively)

for soil set of the 0.250 mm sieve. But in all sieve groups,

obtaining R2 value between 0.91 and 0.89 in 0.250 or 4.76

mesh sizes revealed that sieve size was significant in determi-

ning exchangable Ca + Mg (Table-2). To exchangable K, results

showed that the reflectance values obtained from field samples

or sieved samples (mesh size 4.76 mm) can be used to estimate.

Obtaining R2 value between 0.81-0.84 in all mesh sizes revealed

that sieve size was not significant in determining exchangable

K. However, the overall size to obtain sieve size is important

in determining exchangable Na reveals. The high R2 value was

found to be 0.98 in validation (RMSE = 0.07) in the 0.250

mm mesh size.

Conclusion

Conventional analyses for soil chemical properties deter-

mination will likely remain the methods used by researchers

in the near future. However, the use of portable and remote

sensing tools for the determination of soil chemical contents

may provided that require expensive and time-consuming

analytical methods.

In conclusion, mesh sizes were not significant in prediction

of lime, SOM, exchangable Ca + Mg and the reflection values

of the soil samples taken directly from field samplings can be

used for prediction. However, mesh size were very important

in prediction of CEC and exchangable Na and reflection values

of soil samples taken in to 0.250 mm mesh size can be used

for prediction.
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