

Synthesis of Chiral Geminal Dicationic Ionic Liquid from Amino Acids

AIWU YIN¹, SAIJIN HUANG^{2,*} and Chuanbin $W {\ensuremath{\mathsf{U}}}^2$

¹Department of Life Science and Chemistry, Hunan University of Science and Engineering, Yongzhou, P.R. China ²Department of Chemistry Engineering, Hunan Institute of Engineering, Xiangtan, P.R. China

*Corresponding author: E-mail: huangsaijin@sina.cn

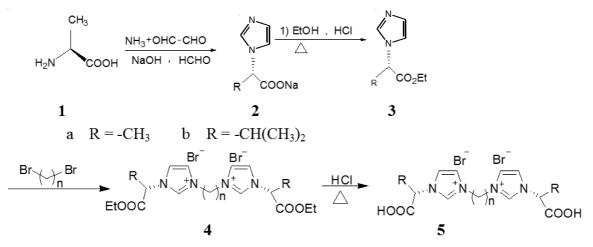
(Received: 21 August 2012;

Accepted: 27 May 2013)

AJC-13557

Chiral imidazolium ionic liquids (**3**) from amino acid were synthesized when reacted with 1,2-dibromoethane, 1,3-dibromopropane, 1,4dibromobutane, 1,6-dibromohexane and 1,9-dibromononane, respectively, to obtain a series of chiral *geminal* dicationic ionic liquid (**5**), The structures of the synthesized compouds were determined by IR, ¹H and ¹³C NMR, this method for the synthesis of chiral *geminal* dicationic ionic liquid is simple and rapid with high yield and the study for their application is under way.

Key Words: Chiral imidazolium ionic liquids, Chiral geminal dicationic ionic liquid, Synthesize, Characterization.


INTRODUCTION

Since the first report of *geminal* dicationic ionic liquids in 2003¹, much effort has been devoted to the *geminal* dicationic ionic liquids because their superior physical properties compared to traditional monocationic ionic liquids². The application as solvents in high-temperature reactions³, novel high-temperature lubricants^{4,5}, ultrastable separation phases⁶ and dye sensitized solar cells^{7,8} have been reported.

It is well known that the chiral monocationic ionic liquids are attractive due to their potential for asymmetric synthesis^{9,10},

gas chromatography¹¹, optical resolution of racemates¹², stereo selective polymerization¹³. But there is no report on the synthesis and application of chiral *geminal* dicationic ionic liquids.

In this work, chiral imidazolium ionic liquids were designed from the natural amino acid, then reacted with 1,2dibromoethane, 1,3-dibromopropane, 1,4-dibromobutane, 1,6dibromohexane and1,9-dibromononane, respectively, to obtain a series of chiral *geminal* dicationic ionic liquid (**Scheme-I**), the structures of the synthesized compouds were determined by IR, ¹H NMR, ¹³C NMR and the study for their application research in synthesis and separation is under way.

n=2, 3, 4, 6, 9

Scheme-I: Synthetic route of chiral geminal dicationic ionic liquid

EXPERIMENTAL

All the chemical reagents used are of analytical pure grade, 1,2-dibromoethane, 1,3-dibromopropane, 1,4-dibromobutane, 1,6-dibromohexane and 1,9-dibromononane was distilled again. Chiral imidazolium ionic liquids **3** from amino acid were synthesized according to the literature procedures¹⁴ and the products were determined by IR, ¹H NMR.

Melting points were recorded on a digital microscope are uncorrected. IR (KBr) spectra (v cm⁻¹) were obtained on Nicolet AVATAR 370 spectrometer, ¹H and ¹³C NMR spectra were taken on a Avance 400 NMR spectrometer, using TMS as internal standard. The specific rotations were measured on an Optical Instrument Ltd. WZZ-ZS polarimeter made in Shanghai Jinke.

Procedure for the synthesis of chiral geminal dicationic ionic liquid (5): 0.25 molar of 1,2-dibromoethane, 1,3-dibromopropane, 1,4-dibromobutane, 1,6-dibromohexane and 1,9dibromononane, resprctively, reacted with 0.5 molar **3** under the protection of N_2 at room temperature then all the products were purified by extraction by 200 mL ethyl acetate four times when reaction solution changed into viscous and vacuum drying 72 h to get product **4**, which on refluxing in 20 mL concentrated hydrochloric acid for 4 h, evaporated solvent under reduced pressure to obtain crude products and then recrystallized to afford the products **5**.

RESULTS AND DISCUSSION

Melting points and optical activity of chiral geminal dicationic ionic liquid: Generally speaking, most ionic liquid are low melting, called room temperature ionic liquids, but the synthesized chiral geminal dicationic ionic liquid 5 have high melting (Table-1) and with the linkage chains increase, the melting pionts decrease.

TABLE-1							
MELTING POINTS AND OPTICAL ACTIVITY OF 5							
Compound	T (°C)	$\left[\alpha\right]_{\mathrm{D}}^{25}$					
5a ₂	218	+7.4(C2.0 %, CH ₃ OH)					
5a ₃	211	+7.8(C2.0 %, CH ₃ OH)					
5a4	205	+8.3(C2.0 %, CH ₃ OH)					
5a ₆	197	+9.4(C2.0 %, CH ₃ OH)					
5a ₉	164	+10.6(C2.0 %, CH ₃ OH)					
5b ₂	224	-18.4 (C2.0 %, CH ₃ OH)					
5b ₃	216	-18.9(C2.0 %, CH ₃ OH)					
5b ₄	208	-19.4(C2.0 %, CH ₃ OH)					
5b ₆	201	-20.3(C2.0 %, CH ₃ OH)					
5b ₉	171	-22.8(C2.0 %, CH ₃ OH)					
^a Melting points uncorrected.	were recorded on a	digital microscope and are					

Synthesis of chiral *geminal* **dicationic ionic liquid:** The synthesis for chiral *geminal* dicationic ionic liquid **5** is easy to purify and have high yields and the products were determined by IR, ¹H NMR (Table-2), ¹³C NMR (Table-3). Compounds **5** in IR showed absroption at 3424 cm⁻¹ (-OH), 1736 (C=O), 1629, 1579 ((imidazole).

Solubility of chiral *geminal* **dicationic ionic liquid:** Great attention has been paid to the ionic liquid as a new type of green solvent. The solubility of the synthesized chiral

	TABLE-2				
	¹ H NMR SPECTRA OF COMPOUNDS 5				
Compound	¹ H NMR, δ (ppm)				
5a ₂	8.76 (s, 2H), 7.40(s, 2H), 7.34(s, 2H), 4.82(q, 2H), 3.72				
	(t, 4H), 1.60(d, 6H).				
5a ₃	8.77(s, 2H), 7.43(s, 2H), 7.34(s, 2H), 4.80, (q, 2H), 3.80				
	(t, 4H), 1.71 (m, 2H), 1.62(d, 6H).				
5a4	8.84(s, 2H), 7.46(s, 2H), 7.41(s, 2H), 4.78 (d, 2H), 3.76				
	(t, 4H), 1.75 (m, 4H), 1.61(d, 6H).				
5a ₆	8.89(s, 2H), 7.48(s, 2H), 7.37(s, 2H), 4.87(q, 2H), 3.78				
	(t, 4H), 1.86(m, 4H), 1.56(d, 6H), 1.30(m, 4H).				
5a ₉	8.85(s, 2H), 7.44(s, 2H), 7.35(s, 2H), 4.88(q, 2H), 3.79				
	(t, 4H), 1.88(m, 4H), 1.58(d, 6H), 1.33-1.40(m, 10H).				
$5b_2$	8.76(s, 2H), 7.40(s, 2H), 7.36(s, 2H), 4.82(q, 2H), 3.72				
	(t, 4H), 2.22(m, 2H), 1.01 (d, 6H), 0.80 (d, 6H).				
5b ₃	8.76(s, 2H), 7.42(s, 2H), 7.38(s, 2H), 4.81, (q, 2H), 3.79				
	(t, 4H), 2.22(m, 2H), 1.73 (m, 2H), 1.02 (d, 6H), 0.84 (d,				
	6H).				
$5b_4$	8.87(s, 2H), 7.48(s, 2H), 7.42(s, 2H), 4.80 (d, 2H), 3.78				
	(t, 4H), 2.22(m, 2H), 1.76 (m, 4H), 1.04 (d, 6H), 0.87 (d,				
	6Н).				
$5b_6$	9.01(s, 2H), 7.68(s, 2H), 7.67(s, 2H), 4.80 (br, 2H), 3.73				
	(m, 4H), 2.21 (m, 2H), 1.87 (m, 4H), 1.32 (m, 4H), 1.06				
	(d, 6H), 0.80 (d, 6H).				
5b ₉	8.89(s, 2H), 7.62(s, 2H), 7.58(s, 2H), 4.80(q, 2H),				
	3.81(t, 4H), 1.86(m, 4H), 2.24(m, 2H), 1.32-1.39(m,				

 1 H NMR spectra were taken in D₂O (5), using TMS as internal standard.

10H), 1.01 (d, 6H), 0.85 (d, 6H)

	TABLE-3						
	¹³ C NMR SPECTRA OF COMPOUNDS 5						
Compound	¹³ C NMR, δ (ppm)						
5a ₂	14.6, 25.4, 58.6, 122.4, 123.6, 138.7, 172.2						
5a ₃	14.8, 25.2, 34.8, 58.9, 122.3, 123.4, 137.4, 172.2						
5a4	14.8, 25.6, 38.6, 64.6, 122.8, 123.0, 137.4, 172.2						
5a ₆	15.0, 27.3, 30.3, 54.8, 72.4, 122.8, 123.6, 137.3, 172.2						
5a ₉	15.1, 26.3, 28.3, 30.4, 32.5, 54.8, 72.2, 122.7, 123.6,						
	137.2, 172.1						
$5b_2$	17.3, 25.3, 28.9, 53.1, 70.7, 122.4, 123.5, 138.7, 172.2						
5b ₃	17.4, 25.2, 28.3, 52.3, 71.7, 122.3, 123.4, 137.4, 172.2						
$5b_4$	17.9, 25.3, 30.4, 52.1, 72.5, 122.5, 123.7, 137.4, 172.1						
$5b_6$	18.2, 25.2, 27.6, 30.5, 55.0, 73.2, 120.3, 123.4, 137.0,						
	172.2						
5b ₉	17.8, 25.2, 26.1, 28.3, 30.0, 32.5, 52.5, 70.2,						
	122.3,123.5, 137.1, 172.3						

geminal dicationic ionic liquid in different solvent were investigated (Table-4). It was found that all the chiral *geminal* dicationic ionic liquid synthesized were dissolved in water and methanol and insoluble in ethyl acetate, acetone, chloroform, which is quite similar to the monocationic ionic liquids with Br⁻ as anion.

Conclusion

A synthetic route toward a novel chiral *geminal* dicationic ionic liquid from amino acids has been described. The solubility and other physical properties have been preliminary studied, further investigations for their application is under way.

ACKNOWLEDGEMENTS

This work is supported by the Construct Program of the Key Discipline in Hunan Province (2012) and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province (2012-318) and

TABLE-4							
SOLUBILITIES OF THE CHIRAL GEMINAL							
DICATIONIC IONIC LIQUID							
Chiral	Solubility						
geminal dicationic ionic liquid	Water	Methanol	Ethyl acetate	Acetone	Chloroform		
5a ₂	s	S	ins	ins	ins		
5a ₃	s	s	ins	ins	ins		
5a4	s	S	ins	ins	ins		
5a ₆	s	S	ins	ins	ins		
5a ₉	s	S	ins	ins	ins		
5 b ₂	s	S	ins	ins	ins		
5b ₃	s	S	ins	ins	ins		
5b ₄	s	S	ins	ins	ins		
5b ₆	s	S	ins	ins	ins		
5b ₉	S	S	ins	ins	ins		
$a_{\rm s} = {\rm soluble}$ ins = insoluble							

as = soluble, ins = insoluble.

Science and Technology Planning Project of Hunan Province (no. 2013FJ3004) and the Key Scientific Research Project of the Hunan Provincial Education Department (Grant No. 2013A).

- REFERENCES
- 1. R.P. Singh and J.M. Shreeve, J. Chem. Soc., Chem. Commun., 1366 (2003).
- J.L. Anderson, R. Ding, A. Ellern and D.W. Armstrong, J. Am. Chem. Soc., 127, 593 (2005).
- 3. X.X. Han and D.W. Armstrong, Org. Lett., 7, 4205 (2005).
- C.M. Jin, C.F. Ye, B.S. Phillips, J.S. Zabinski, J.M. Shreeve, X.Q. Liu, W.M. Liu and J.M. Shreeve, J. Mater. Chem., 16, 1529 (2006).
- 5. Z. Zhuo, B.S. Phillips, J.-C. Xiao and J.M. Shreeve, *Chem. Mater.*, **20**, 2719 (2008).
- Q.B. Liu, F.V. Rantwijk and R.A. Sheldon, J. Chem. Technol. Biotechnol., 81, 401 (2006).
- C. Zafer, K. Ocakoglu, C. Ozsoy and S. Icli, *Electrochim. Acta*, 54, 5709 (2009).
- J.Y. Kim, T.H. Kim and D.Y. Kim, N.-G. Park and K.-D. Ahn, J. Power Sources, 175, 692 (2008).
- Z.M. Wang, Q. Wang, Y. Zhang and W.L. Bao, *Tetrahedron Lett.*, 46, 4657 (2005).
- B. Pegot, G. Vo-Thanh, D. Gori and A. Loupy, *Tetrahedron Lett.*, 45, 6425 (2004).
- 11. J. Ding, T. Welton and D.W. Armstrong, Anal. Chem., 76, 6819 (2004).
- J. Ding, V. Desikan, X.X. Han, T.L. Xiao, R.F. Ding, W.S. Jenks and D.W. Armstrong, *Org. Lett.*, **7**, 335 (2005).
- 13. C.J. Adams, M.J. Earle and K.R. Seddon, Chem. Commun., 1043 (1999).
- 14. W.L. Bao, Z.M. Wang and Y.X. Li, J. Org. Chem., 68, 591 (2003).