

Effect of ³H and ¹⁴C Interference on the Radioactivity Measurement of ¹²⁹I in Low and Intermediate-Level Radwastes[†]

KE CHON CHOI*, BYONG CHOL SONG, HONG JOO AHN, YONG JOON PARK and KYUSEOK SONG

Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353, Republic of Korea

*Corresponding author: Fax: +82 42 8688148; E-mail: nkcchoi@kaeri.re.kr

AJC-13629

The effect of ³H and ¹⁴C interference on the separation and quantification of ¹²⁹I from iron scraps and heating insulators as a low and intermediate-level radwaste has been studied. The iron scraps and heating insulators were liquidized using an acid digestion pretreatment method. Then, an anion-exchange resin adsorption method was used to separate the ¹²⁹I and ¹⁴C in the pretreated aqueous solution. The ³H remained in the aqueous phase after the back-extraction and was removed by low-temperature evaporation at 70 °C. Through the chemical separation and evaporation, most of the ¹⁴C and ³H were removed and no radioactivity was detected. In the separation extraction, the average recovery rate of ¹²⁹I was approximately 80.8 %.

Key Words: Low and intermediate level radwastes, ¹²⁹I, ¹⁴C, ³H, recovery.

INTRODUCTION

In Korea, researchers have been working on the development of an analytical method to detect α and β -emitters to aid in regulating the transportation and disposal of nuclear waste generated from nuclear power plants. Among these critical nuclides, ¹²⁹I is produced as a fission product in nuclear reactors and has a long half-life (t_{1/2} = 1.57 × 10⁷ y)^{1.2}. The significance of the production of this nuclide has been recognized due to its radio-ecological effects^{3.4}. This radioactive iodine isotope is also difficult to measure directly with a β counter because its specific activity is low (6.4 Bq/µg)^{5.6}. For long-lived, β -emitting nuclides the requirement of radiochemical purity is stringent and the degree of purity is difficult to measure or control, particularly because many of the impurities are also pure β -emitters⁷.

In addition, ³H, which is generated along with ¹²⁹I in a fission and activation process, emits weak-energy β radiation and is not easily removed by an ionic exchange or degasification method because it exhibits strong movement and diffusion⁸. Organic and inorganic ¹⁴C is generated in nuclear facilities and inorganic. ¹⁴C is collected *via* adsorption and precipitation, but organic carbon is easily released into the environment⁹⁻¹⁰. The ³H and ¹⁴C isotopes can interfere with the measurement of ¹²⁹I because they emit in the same detective energy range as ¹²⁹I¹¹.

In this study, iron scrap and heating insulator types of the simulated radioactive wastes were prepared to measure the radioactivity of ¹²⁹I present in the low- and intermediate-level radwastes. To investigate the interference of ³H and ¹⁴C in the measurement of ¹²⁹I using a liquid scintillation counter, ³H and ¹⁴C, which were added into a pretreated simulated acid solution, were separated and removed *via* ionic exchange and low-temperature evaporation methods.

EXPERIMENTAL

Reagent grade NaNO₃ (Aldrich) was used as acid digestion agent and KI was added as an ¹²⁹I carrier. The ¹²⁹I used to trace the radioiodine was first diluted in 2,138 Bq/mL, NaI/0.1 M Na₂S₂O₃ (NIST-SRM-4949 c). An anion exchange resin (AG 1 × 2, 50-100 mesh, Cl⁻ form, Bio-rad Co.) was used for iodine absorption after it was washed with a dilute acid. The radioactivity of the ¹²⁹I was measured using a liquid scintillation counter.

Application of the acid digestion method: Approximately 10 g iron scrap and heating insulator of the dry active radwastes were placed into a 500 mL polyethylene bottle into which 20 mL of 7.0 % NaClO and 1 mL standard KI solution (1000 μ g/ mL) were added. After mixing for 4 h using a shaker and filtering, a portion of the solution was used as a stock.

*Presented to the 4th International Symposium on Applications of Chemical and Analytical Technologies in Nuclear Industries, Daejeon, Korea

Separation of the ¹²⁹I using an anionic exchange resin: The pH 10 buffer solution (5 mL), 10 mg KI and 5 g anionic resin (AG1-X 4 Resin) were placed into a plastic beaker and stirred with a magnetic bar for 12 h to absorb the iodine. The mixture was then filtered with Whatman # 42 filter paper and the aqueous solution was discarded. The resin was used to fill a polyethylene pipe 10 mm in diameter and 140 mm long. Next, the resin was washed twice with 10 mL distilled water. The iodine was eluted first with 0.2 M NaNO3 at a flow rate of 0.4 mL/min, then with 2 M NaNO₃. The 10 mL eluted solution was poured into a 50 mL extraction tube and 1 mL HNO3 and 1000 mg NH₂OH·HCl were added. The iodine was extracted for 3 min with the addition of 10 mL CHCl₃. The aqueous phase of the extraction solution was discarded and only 5 mL of the organic phase was placed into a new extraction tube. After adding 5 mL 0.1 N NaHSO₃ to the separated organic phase in the tube, the solution was back-extracted to the aqueous phase and the 1 mL aqueous phase was removed into a glass vial. The radioactivity was measured with an liquid scintillation counter after mixing with a 14 mL cocktail.

RESULTS AND DISCUSSION

Quench calibration: To determine the reliability for quench correction methods used in liquid scintillation counter, samples with known activity were measured using liquid scintillation counter. To determine the counting efficiency from the quench levels obtained during tritium counting, a 4.86 Bq ¹²⁹I standard (NIST-SRM-4949 c), a 73,059 Bq ³H standard (spec-check, Packard) and a 14,878 Bq ¹⁴C standard (spec-check, Packard) were each placed into 10 scintillation vials. As a quenching agent, nitromethane was also added in the range of 0~150 µL for ¹²⁹I, 0~100 µL for ³H and 0~200 µL for ¹⁴C.

Effect of ¹⁴C and ³H on iodine measurement *via* liquid scintillation counter: As a radioactive waste, iron scrap and heating insulator produced from a nuclear power plant contain a constant concentration of ¹⁴C and ³H, which may be several tens times higher than that of ¹²⁹I. Therefore, measurement methods of ¹²⁹I activity from a β -emission nuclide such as ¹⁴C and ³H was studied because ¹²⁹I is also a pure β -emission radionuclide and is not easy to be separated during pretreatment. Fig. 1 provides the β -spectra for several volatile radioactive nuclides (³H, ¹⁴C and ¹²⁹I) obtained using a liquid scintillation counter. As shown in Fig. 1, because the spectra of ¹⁴C, ³H and ¹²⁹I can overlap in the 250~450 channel band each other, ¹⁴C must be removed for accurate determination of ¹²⁹I.

Separation of ¹²⁹I using an anionic exchange resin: A flowchart for the analysis process for the separation and quantification of ¹²⁹I in the iron scrap and heating insulator samples is provided in Fig. 2. The aqueous phase eluted by the acid leaching was loaded onto the anionic resin (AG1-X 4 Resin) to adsorb the ¹²⁹I and inorganic ¹⁴C. Then, the ¹⁴C was eluted from the column using a 0.2 M NaNO₃ solution. The ¹²⁹I remained in the column and was eluted using 2 M NaNO₃. Then, the ¹²⁹I in the eluted solution was reduced to I₂ by hydroxylamine hydrochloride (NH₂OH·HCl) and extracted into CHCl₃. The I₂ was back extracted by reduction to I⁻ with sodium bisulfite (NaHSO₃). The ³H was removed by evaporation at a temperature below 70 °C after removing the iodine in the

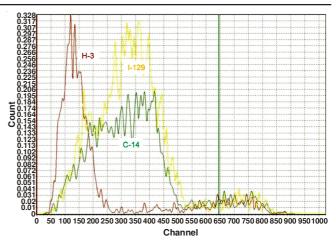


Fig. 1. Spectra of ³H, ¹⁴C and ¹²⁹I as determined by liquid scintillation counting

The affinities of various anions for the resin of AG1 are in the order

 $\begin{array}{ll} \mathbf{I}^{*} &> phenolate > HSO_4^{*} > CIO_3^{*} > NO_3^{*} > \mathbf{B}\mathbf{I}^{*} > CN^{*} > HSO_3^{*} > NO_2^{*} > \mathbf{C}\mathbf{I}^{*} > HCO_3^{*} > IO_3^{*} > HCOO^{*} > Ac^{*} > OH^{*} > \mathbf{F}^{*} \end{array}$

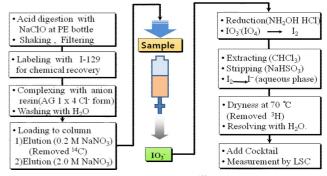


Fig. 2. Chemical procedure for separating ¹²⁹I in low- and intermediatelevel radwastes

organic phase to an aqueous phase. The radioactivities for ¹²⁹I before and after ¹⁴C and ³H removal were compared in Tables 1 and 2. As shown in Tables 1 and 2, the evaporation procedure for the ¹⁴C and ³H did not induce co-evaporation of ¹²⁹I at temperatures below 70 °C. Table-3 provides the recovery rates for ¹²⁹I from a solution containing ¹⁴C and ³H standards after

TABLE-1 EFFECT ON THE INTERFERENCE OF ¹⁴ C IN THE ¹²⁹ I MEASUREMENT								
Radioactivity (Bq/mL)			Recovery					
Add ¹²⁹ I	Add ¹⁴ C	Measured ¹²⁹ I	(%)	Remark				
4.36	0	3.62	80.0	Removed ¹⁴ C				
4.36	100	5.01	114.9	Not removed ¹⁴ C				
4.36	100	3.49	83.0	Removed ¹⁴ C				

TABLE-2 EFFECT ON THE INTERFERENCE OF ³H IN THE ¹²⁹I MEASUREMENT

ł					
	Ra	dioactivity	Recovery	Remark	
	Add ¹²⁹ I	Add ³ H	Measured ¹²⁹ I	(%)	Kennark
	4.36	0	3.68	82.40	Remove ³ H
	4.36	0	3.52	84.7	No evaporation
	0	50	0.04	< 0.1	Remove ³ H
	4.36	50	18.60	37.2	No evaporation
	4.36	50	3.55	81.4	Remove ³ H

TABLE-3 RECOVERY OF ¹²⁹ I ON THE ³ H AND ¹⁴ C AS MEASURED								
BY LIQUID SCINTILLATION COUNTER								
	Radioact	Recovery	Remark					
Add ¹²⁹ I	Add ¹⁴ C	Add ³ H	Measured ¹²⁹ I	(%)	Remark			
4.36	100	50	5.13	117.6	No column elution no evaporation			
4.36	100	50	3.52	80.8	Removed ¹⁴ C, ³ H			

separation and removal *via* anion exchange resin column elution or volatilization. As shown in Table-3, the ¹²⁹I recovery rate for the sample in which the ¹⁴C and ³H were not separated is 117.6 %. In contrast, ¹²⁹I recovery rate measured after removal of the ³H and ¹⁴C was 80.8 %.

Conclusion

To quantify ¹²⁹I, the radionuclide must be radiochemically separated from other β -emitting radionuclides, such as ¹⁴C and ³H because ¹²⁹I has a relatively low radioactivity in the radwaste compared with ³H and ¹⁴C. To identify the chemically pure separation of ¹²⁹I, simulated samples were prepared through the addition of ¹²⁹I, ¹⁴C and ³H to iron scrap and a heat insulator. The ¹⁴C and ³H were largely removed by radiochemical separation and evaporation and no radioactivity from the sample was detected. Through the separation and quantitative analysis experiments, an average recovery rate of 80.8 % was achieved for ¹²⁹I added to the simulated sample.

ACKNOWLEDGEMENTS

This study has been carried out under the nuclear research and development program by the Ministry of Education, Science and Technology of Korea.

REFERENCES

- R. Seki, E. Kmura, T. Takahashi and N. Ikeda, J. Radioanal. Nuclear Chem., 138, 17 (1990).
- L.C. Bate and J.R. Stokely, Determination of ¹²⁹I in Mixed Fission Products by Neutron Activation Analysis. ORNL/TM-7449 (1980).
- 3. J.S. Edmonds and M. Morita, Pure Appl. Chem., 70, 1567 (1998).
- H. Inoue and M. Kagoshima, *Appl. Rad. Isotopes*, **52**, 1407 (2000).
 J.E. Cline, Advanced Radioactive Waste Assay Methods. EPRI NP-5497
- (1987).J.E. Cline, Direct Assay of Drummed Evaporator Bottoms, Dry Active
- Waste and Filter Cartridges at the CINNA Nuclear Station. Topical Meeting on Waste Management and Decontamination and Decommissioning (1987).
- E. Cline, J.R. Noyce, L.J. Coe and K.W. Wright, Assay of Long-lived Radionuclides in Low-level wastes from Power Reactors, NUREG/ CR-4101 (1985).
- J.N. Vance, H.R. Helmholz and A. Sutherland, Assessing the Impact of NRC Regulation 10 CFR 61 on the Nuclear Industry, EPRI NP-5983 (1988).
- R. Dayal, R.F. Pietrazak and J.H. Cliton, Geochemistry of Trench Leachates at Low-Level waste Burial Site, BNL-NUREG-34596 (1984).
- L.J. Kirby, Radionuclide Distributions and Migration Mechanism at Shallow Land Burial Sites, NUREG/CR-4670 (1991).
- W.T. Bes and M.D. Naughton, Radionuclide Correlations in Low-level Radwastes. EPRI NP-4037 (1985).