

2

3

RACHID FEGAS^{1,2,3,*}, SAID ZERKOUT¹, MERIEM TABERKOKT¹, ZHOR BETTACHE² and MICHEL RIGHEZZA³

Phthalylvaline by Quinine Carbamate Based Chiral Stationary

- 4 ¹Laboratoire de Recherche sur les Produits Bioactifs et la Valorisation de la Biomasse, LPBVB, Ecole Normale Supérieure, Vieux Kouba,
- 5 Alger, Algéria
- 6 ²Laboratoire de la Police Scientifique, 16000 Alger, Algéria
- 7 ³UMR 6263 Institut des Sciences Moléculaires de Marseille, Université de Paul Cézanne, 13397 Marseille, France

8 *Corresponding author: E-mail: fegasrachid@yahoo.fr

(Received: 13 February 2013;

Accepted: 7 June 2013)

AJC-13608

9 The quinine carbamate type chiral stationary phase used for direct enantiomer separation of amino acid was studied. The influence of 10 mobile phase composition, methanol and different acids were systematically investigated to gain an insight into the overall chiral recognition 11 mechanism.

12 Key Words: Enantiomer separation, Chiral stationary phase, LC mobile phase composition, Phthalylvaline.

INTRODUCTION

The difference in pharmacological effect of isomers can
be illustrated by quinine and quinidine, the major cinchona
alkaloids four chiral carbon atoms (quinine: 3R, 4S, 8S, 9R
quinidine: 3R, 4S, 8R, 9S) configurations are used as antimalarial and antiarrythmic agents respectively.

18 Chiral stationary phases (CSPs) with quinine (QN) carba-19 mate derivatives (Fig. 1), depicting *tert*-butyl carbamoylated 20 quinine as chiral template and named CSP II in this contri-21 bution, have proved to successfully facilitate the direct high-22 performance liquid chromatographic enantioseparation of 23 chiral acids (selectands, SAs).

24 Advantageously, these chiral stationary phases are 25 operated with buffered hydro-organic mobile phases in the 26 anion-exchange mode where the tertiary amine moiety in the 27 quinuclidine ring is positively charged. As shown in earlier 28 publications, these chiral stationary phases exhibit high 29 enantioselectivity for the resolution of a broad range of chiral 30 acidic selectands, such Accordas, e.g., N-derivatized amino acids¹⁻⁸. These chiral stationary phases can be classified as weak 31 32 chiral anion exchangers. These intermolecular electrostatic 33 interactions are accompanied by additional attractive and/or 34 repulsive forces, such as hydrogen bonding, *p-p* interactions, 35 dipole-dipole, van der Waals and steric interactions, resulting 36 in enantioseparation of different magnitude for racemic 37 anionic selectands9-13.

CSP 1: ProntoSIL Chiral AX QN-1 (8S,9R) CSP 1: ProntoSIL Chiral AX QD-1 (8R,9S)

CSP 3: ProntoSIL Chiral AX QN-2 (8S,9R)

Fig. 1. Chiral stationary phases (CSPs) based on quinine carbamate. CSP 1 with *tert*-butyl carbamoyl quinine; CSP 2 with *tert*butyl carbamoyl quinidine; CSP 3 with diisopropyl phenyl carbamoyl quinine 38 In this work, a chiral stationary phase (CSP) based on 39 tert-butyl carbamoyl quinine (tBuCQN) was used to separate 40 the enantiomer of amino acid derivative phthalylvalin and the 41 influence of different acids in mobile phases (acetic acid, 42 propionic acid, butanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid and dodecanoic acid). Overall 43 44 enantioselectivity was evaluated to gain more of an insight 45 into the chromatographic mechanism.

The work of Lindner et al.^{6,14-23} have shown the interest 46 that could represent quinine carbamate based stationary phase9-11. 47 48 We are interested in making a grafting of quinine carbamate 49 in situ in a column filled with pure silica stationary phase. The 50 grafting method has been developed to be directly adaptable 51 to the grafting of quinine carbamate on monoliths silica-based 52 capillary for chromatography and electrochro-matography.

53 In this work, a chiral stationary phase (CSP) based on tert-butyl carbamoyl quinine (tBuCQN) was used to separate 54 55 the enantiomer of amino acid derivative phthalylvaline and 56 the influence of different acids in mobile phases. Overall 57 enantioselectivity was evaluated to gain more of an insight 58 into the chromatographic mechanism. 59

H₂C Н, HO HO Ή H₃CC H₃CO Quinidine (3R, 4S, 8R, 9S) Quinine (3R, 4S, 8S, 9R) $pKa_1 = 5.4, pKa_2 = 10$

Fig. 2. Structure of quinine and quinidine

pKa₁ = 4.1, pKa₂ = 8.5

Fig. 3. Structure of phthalylvalin

EXPERIMENTAL

Synthesis of o-(t-butylcarbamoyl)quinine: The synthesis of carbamate strcture is prepared *via* isocyanate reaction: 3 60 g of quinine, as free base, were dissolved in dry toluene and 61 62 1.2 mL of t-butylisocyanate and 1 drop of dibutyl tin dilaurate 63 as catalyst were added. The mixture was refluxed for 4 h, the 64 solvent evaporated and the remaining raw material was washed with n-hexane. The white solid was crystallized with cyclohexane 65 resulting o-(t-butylcarbamoyl) quinine in 80 % yield. 66

Synthesis of t-BuCQN: We conducted a synthesis of 67 68 t-BuCQN according to protocol proposed by Lindner and Lammerhofer¹. 2 g of quinine carbamate were dissolved in 69

dry toluene, 1.5 mL of 3-triethoxysilyl isocyanate and 1 drop 70 of dibutyl tin dilaurate as catalyst were added. The mixture 71 was refluxed for 4 h. The solvent was evaporated and the 72 remaining raw materiel washed with dry diethyl ether. The 73 white solid (quinine derivative) was crystallized (99%). The 74 resulting product structure was confirmed by ¹H NMR. 75 76

Fig. 4. Structure of tert-butyl carbamoylquinine (tBuCQN) (8S, 9R)

Synthesis of chiral stationary phase based on t-BuCQN:

The following protocol was applied: a column filled with parti-77 cles of pure silica was dried by circulation of helium. 3 g of 78 3-mercaptopropyl trimethoxysilane were suspended in chloro-79 form after addition of 3 g of o-(t-butylcarbamoyl)quinine and 80 200 mg of radical initiator azo- α, α' -bis-isobutyronitrile 81 (AIBN) in 100 mL methanol. The mixture was percolated into 82 the column for 15 h with a flow rate of 1 mL/min. The prepara-83 tion was ended by washed with different polarities solvents. 84

85 The column of pure silica was a column type Lichrospher 60 (250 mm \times 6 mm, 12 mm) (VWR, France). The chiral 86 phase obtained (Si-QN) was used to separation of amino acid 87 derivative phthalylvaline with a polar mobile phase a mixture 88 of methanol and acid C_nH_(2n+1)-COOH, n ranges from 2-18 89 (Table-1) with flow rate 1 mL/min and detection was carried 90 at 245 nm. 91

	92
ACIDS ASE	
Nonanoic acid	

USED IN THE MOBILE PHASE						
C2	Ethanoic acid	C9	Nonanoic acid			
C3	Propanoic acid	C10	Decanoic acid			
C4	Butanoic acid	C12	Dodecanoic acid			
C5	Pentanoic acid	C14	Tetradecanoic acid			
C6	Hexanoic acid	C16	Hexadecanoic acid			
C7	Heptanoic acid	C18	Octadecanoic acid			
C8	Octanoic acid					

TABLE-1 NAME AND LABEL OF THE

RESULTS AND DISCUSSION

The study of the retention on quinine carbamate stationary phase was much more interesting. The mobile phase consists 93 in mixture of alcohol (methanol) and different acids. 94

The concentration of acid was systematically modified in 95 order to highlight its influence on the retention temps (tr_1, tr_2) , 96 retention factor (k) and the selectivity (α) (Tables 2-4). As 97 expected, the retention times of enantiomers depends on the 98 concentration of acid in the mobile phase. The concentration 99 factor directly influences the retention mechanism involved in 100 electrostatic interactions between the solute and the stationary 101 phase. The selectivity between the enantiomers is influenced 102 both by the nature of the acid and its concentration. The 103

RETENTION TIME OF BOTH ENANTIOMERS tr ₁ AND tr ₂ AND SELECTIVITY (α) FOR SIX DIFFERENT CONCENTRATIONS OF ADDED MODIFIERS IN THE MOBILE PHASE (0.001, 0.03, 0.06, 0.125, 0.25)												
AND 0.5 %), THE LABEL EXPRESSES THE LENGTH OF THE ALKYL CHAIN												
		C2	C3	C5	C6	C7	C8	C9	C12	C14	C16	C18
05%	tr_1	7.310	10.342	9.966	11.285	11.425	11.974	12.217	14.081	8.516	8.586	8.217
0.5 %	tr_2	8.032	11.640	11.110	12.689	12.873	13.500	13.787	15.885	9.572	9.662	9.167
	α	1.0987	1.1255	1.1147	1.1244	1.1267	1.1274	1.1236	1.1281	1.1240	1.1253	1.1156
0.25 %	tr_1	9.028	12.410	11.396	12.652	12.705	13.017	13.478	13.837	8.480	8.261	8.361
0.23 %	tr_2	10.059	14.062	12.817	14.290	14.345	14.658	15.234	15.777	9.512	9.263	9.303
	α	1.1142	1.1331	1.1246	1.1.1294	1.1290	1.1260	1.1302	1.1402	1.1216	1.1212	1.1126
0.125 %	tr_1	10.958	13.955	14.198	13.709	13.568	13.944	14.604	10.046	8.974	8.414	8.725
0.125 %	tr_2	12.317	15.861	16.128	15.467	15.343	15.765	16.580	11.568	10.167	9.450	9.788
	α	1.1240	1.1365	1.1359	1.1282	1.1308	1.1305	1.1353	1.1515	1.1632	1.1231	1.1218
0.06 %	tr_1	12.643	15.007	14.941	14.339	14.041	14.255	14.803	9.719	9.382	8.544	8.802
0.00 %	tr_2	14.271	17.083	16.981	16.285	15.871	16.085	16.737	11.131	10.772	9.610	9.844
	α	1.1287	1.1383	1.1365	1.1357	1.1303	1.1283	1.1306	1.1452	1.1481	1.1247	1.1183
0.02.07	tr_1	13.676	15.516	16.237	14.494	14.273	14.949	14.565	9.507	8.875	8.614	8.807
0.03 %	tr_2	15.425	17.708	18.520	16.418	16.123	16.368	16.465	10.831	10.000	9.688	9.845
	α	1.1278	1.1412	1.1406	1.1327	1.1296	1.0949	1.1304	1.1392	1.1267	1.1246	1.1178
0.01 %	tr_1	14.504	16.057	16.098	14.443	15.120	15.583	13.620	9.360	8.970	8.624	8.818
	tr_2	16.398	18.312	18.336	16.352	17.103	17.674	15.270	10.624	10.110	9.82	9.868
	α	1.1305	1.1404	1.1390	1.1321	1.1311	1.1341	1.1211	1.1350	1.1270	1.1386	1.098

TABLE-2

 TABLE-3

 RETENTION TIME OF BOTH ENANTIOMERS tr₁ AND tr₂ AND SELECTIVITY (α) FOR FOUR DIFFERENT CONCENTRATIONS OF BUTANOIC ACID (C4) ADDED IN THE MOBILE PHASE (0.05, 0.1, 0.2 AND 0.4)

 C4
 0.4 %
 0.2 %
 0.1 %
 0.05

C4	0.4 %	0.2 70	0.1 70	0.05 %
$tr_1; tr_2$	11.520; 12.989	12.995; 14.706	15.713; 17.897	15.596; 17.768
α	1.1275	1.1316	1.1389	1.1392

TABLE-4							
RETENTION TIME OF BOTH ENANTIOMERS tr_1 AND tr_2 AND SELECTIVITY (α) FOR FOUR DIFFERENT							
CONCENTRATIONS OF DECANOIC ACID (C10) ADDED IN THE MOBILE PHASE (0.01, 0.02, 0.05 AND 0.1 %)							
C10	0.1 %	0.05 %	0.02 %	0.01 %			
$tr_1 tr_2$	14.483-16.390	14.316-16.222	14.220-16.088	13.820-15.574			
α	1.1316	1.1331	1.1313	1.1269			

104 influence of nature, the length of the carbon chain and the 105 concentration of acid on the retention factor (k) and the 106 resolution factor (R) measured with the Purnell equation:

$$\frac{107}{108} R = \frac{1}{4} \frac{\alpha - 1}{\alpha} \frac{k}{k + 1} \sqrt{N} .$$

108 Disregarding the weak resolution due to the weak plate 109 number obtained with the large diameter of particles, N equals 100 1650 theoretical plates, separations between enantiomers are 111 quite satisfactory. The performance in terms of resolution 112 and efficiency could be easily increased by reducing of the 113 diameter of particles.

The chiral mechanism of separation was mainly based on
specific interaction between the solute and the stationary phase.
The retention was directly controlled by mobile phase composition but not the selectivity which results of the two mechanisms, electrostatic interactions and partition mechanism.
The retention factor is influenced by the concentration of

acid and length of alkyl chain (very clearly visible with acids
C2-C9). The retention is higher when the concentration is low
and considering the length of the alkyl chain, the factor is low
but increases with C2, C3, C4 and C5 and then decreases with
lengths over.

125 The resolution depends on the concentration and length

of the alkyl chain of the acid. It is high with low concentrations 126 of acid. C2 resolution is the lowest. It reaches the highest value 127 for C3, C4 and C5 and subsequently decreases with C6 to C9. 128

Considering acids with length alkyl chain greater than or 129 equal to C10, the effect of the chain on retention (k) or the 130 resolution (R) is most noticeable. 131

In summary, the mechanisms put into play are sharing 132 induced the ionic interaction between the solute and acid and 133 by the hydrophobic chain of the acid. Sharing is a mechanism 134 that promotes the separation of enantiomers when the alkyl 135 chain of the acid is short (C3-C5). The ionic interaction is 136 controlled by the ionic strength or concentration of acid in the 137 mobile phase. When the concentration of acid augments the 138 retention and separation diminished. 139

140

Conclusion

This work was developed for using the quinine chiral141selector grafted in stationary phase in HPLC. In situ synthesis142of a chiral stationary phase based quinine carbamate according143to Lindner was performed. The column obtained was enabled144to make a separation of enantiomers of phthalylvaline with a145good selectivity. The method proposed of synthesis, preparation146and activation of pure silica and conditions of grafting, is quite147

- 148 satisfactory, taking into consideration the possibility of separa-
- 149 tion of N protected amino acid and its applications to columns
- 150 of small diameters or capillaries. The results obtained show
- 151 that the proposed protocol consisting in the in situ grafting of
- 152 quinine carbamate can be extended to more powerful chroma-
- 153 tographic systems using stationary phases such as monolithic
- 154 structure for capillary chromatography or electrochroma-
- 155 tography.

156

REFERENCES

- M. Lämmerhofer and W. Lindner, *J. Chromatogr.* A, 741, 33 (1996).
 M. Lämmerhofer and W. Lindner, *GIT Special-Chromatogr. Int.*, 96,
- 16 (1996).
 O.P. Kleidernigg, M. Lämmerhofer and W. Lindner, *Enantiomer*, 1,
- 387 (1996).
 4. M. Lämmerhofer, P.D. Eugenio, I. Molnar and W. Lindner, *J. Chromatogr. B*, 689, 123 (1997).
- V. Piette, M. Lämmerhofer, K. Bischoff and W. Lindner, *Chirality*, 9, 157 (1996).
- W. Lindner, M. Lämmerhofer and N.M. Maier, Cinchonan Based Chiral Selectors for Separation of Stereoisomers, PCT/EP97 Patent Application/02888.
- 7. M. Lämmerhofer, N.M. Maier and W. Lindner, Am. Lab., 30, 71 (1998).
- N.M. Maier, L. Nicoletti, M. Lämmerhofer and W. Lindner, *Chirality*, 11, 522 (1999).

- 9. L. Asnin and G. Guiochon, J. Chromatogr. A, 1091, 11 (2005).
- A. Maximini, H. Chmiel, H. Holdik and N.W. Maier, J. Membr. Sci., 276, 221 (2006).
- 11. X.H. Zhang, Y. Wang and W.J. Jin, Talanta, 73, 938 (2007).
- 12. R. Fegas, M. Righezza and A. Hamdi, *Asian J. Chem.*, **21**, 4001 (2009).
- R. Fegas, A. Bensalem, Z. Bettache, F. Ouabha and M. Righezza, *Asian J. Chem.*, **22**, 1582 (2010).
- I.W. Wainer, R.M. Stiffen and T. Shibata, J. Chromatogr. A, 411, 139 (1987).
- A. Mandl, L. Nicoletti, M. Lämmerhofer and W. Lindner, J. Chromatogr. A, 858, 1 (1999).
- E. Tobler, M. Lämmerhofer, W.R. Oberleitner, N. Maier and W. Lindner, *Chromatographia*, 51, 65 (2000).
- 17. S. Schfzick, M. Lämmerhofer, W. Lindner, K.B. Lipkowitz and M. Jalaie, *Chirality*, **12**, 742 (2000).
- C.V. Hoffmann, R. Reischl, N.M. Maier, M. Lämmerhofer and W. Lindner, J. Chromatogr. A, 1216, 1157 (2009).
- E. Tobler, M. Lämmerhofer, G. Mancini and W. Lindner, *Chirality*, 13, 641 (2001).
- K. Gyimesi-Forràs, J. Kökösi, G. Szász, A. Gergely and W. Lindner, J. Chromatogr. A, 1047, 59 (2004).
- M. Lämmerhofer, O. Gyllenhaal and W. Lindner, J. Pharm. Biomed. Anal., 35, 259 (2004).
- K. Akasaka, K. Gyimesi-Forràs, M. Lämmerhofer, T. Fujita, M. Watanabe, N. Harada and W. Lindner, *Chirality*, 17, 544 (2005).
- K. Gyimesi-Forràs, A. Leitner, K. Akasaka and W. Lindner, J. Chromatogr. A, 1083, 80 (2005).