

Synthesis and Crystal Structure of 1-(4-{[(*E*)-4-methoxy-2hydroxybenzylidene]amino}phenyl)ethanoe Oxime

WEN-KUI DONG^{*}, JUN-JIANG WU, LI WANG, YANG ZHANG, XIANG LI and LI LI

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China

*Corresponding author: E-mail: dongwk@126.com

(Received: 12 July 2012;

Accepted: 30 April 2013)

AJC-13424

The compound 1-(4-{[(*E*)-4-methoxy-2-hydroxybenzylidene]amino}phenyl)ethanoe oxime with the molecular formula $C_{16}H_{16}N_2O_3$, has been synthesized and characterized structurally. The two benzene rings in the molecule form a dihedral angle of 3.05(2)°. There is one strong intramolecular O-H···N hydrogen bond between the hydroxyl (O2-H2) groups and the Schiff base nitrogen (N2) atom, with the distance of d(N2-O2) = 2.593(4) Å. In the crystal structure, each molecule links other three molecules into an infinite 2D supramolecular structure by three pairs of intermolecular O1-H1···N1, C1-H1A···O1 and C16-H16B···O3 hydrogen bonds.

Key Words: Mono-oxime compounds, Synthesis, Crystal structure.

INTRODUCTION

Oxime-type compounds are a significant class of organic compounds because of their applications in many fields of organic¹, biological, analytical and coordination chemistry²⁻⁸. The complexes with oxime-type compounds are also important in biomaterial applications⁹, often exhibit satisfactory insecticidal, fungicidal or herbicidal activity with low-grade toxicity and residue. Most of them are stable in solution and solid state and are stable to hydrolysis compared with the corresponding imines¹⁰. Thus, new materials can be produced by using these compounds, which seem to be suitable candidates for further chemical modifications¹¹. Herein, we report the synthesis and crystal structure of 1-(4-{[(E)-4-methoxy-2-hydroxybenzylidene]amino}phenyl)ethanoe oxime.

EXPERIMENTAL

4-Methoxy salicylaldehyde and 4-amino phenylethanone were purchased from Alfa Aesar and used without further purification. 4-Aminophenylethanone oxime was synthesized according to an analogous method reported earlier¹². The other reagents and solvents were analytical grade reagents from Tianjin Chemical Reagent Factory. C, H and N analyses were carried out with a GmbH VariuoEL V3.00 automatic elemental analyzer. IR spectra in the range 4000-400 cm⁻¹ were recorded on a VERTEX70 FT-IR spectrophotometer using KBr pellets. ¹H NMR spectra were recorded on a Mercury-400BB spectrometer at room temperature using CDCl₃ as solvent. X-ray single crystal structure was determined on a Bruker Smart 1000 CCD area detector. Melting points were measured by the use of a microscopic melting point apparatus made in Beijing Taike Instrument Limited Company and the thermometer was uncorrected.

1-(4-{[(E)-4-methoxy-2-hydroxybenzylidene]amino}phenyl)ethanoe oxime was synthesized according to reported method³. A solution of 4-aminophenylethanone oxime (75.1 mg, 0.5 mmol) in ethanol (3 mL) was added to a solution of 4-methoxy salicylaldehyde (76.2 mg, 0.5 mmol) in ethanol (3 mL) and the mixture was heated at 328 K for 12 h. After cooling to room temperature, yellow precipitate was collected on a suction filter, washed with ethanol and ethanol/hexane (1:4) respectively. The isolated compound was dried under reduced pressure and purified with recrystallization from ethanol to yield 112.9 mg of crystalline solid. Yield 79.4 %. m.p. 474-475 K. Anal. calcd. for: $C_{16}H_{16}N_2O_3$: C, 67.59; H, 5.67; N, 9.85. Found: C, 67.72; H, 5.48; N, 6.71.

Yellow needle-like single crystals suitable for X-ray diffraction studies were obtained after about one month by slow evaporation from a ethanol/chloroform(1:1) solution (5 mL) of the title compound.

X-Ray structure determination: The single crystal of the title compound, with approximate dimensions of 0.38 mm × 0.11 mm × 0.07 mm was placed on a Bruker Smart 1000 diffractmeter equipped with Apex CCD area detector. The diffraction data were collected using a graphite monochromated MoK_{α} radition ($\lambda = 0.71073$ Å) at 298(2) K. The structure was solved by using the program SHELXS-97 and Fourier difference techniques and refined by full-matrix least-squares method on F² using SHELXL-97. Details of the data collection and refinements of title compound are given in Table-1. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added theoretically. CCDC: 757720.

TABLE-1 CRYSTAL DATA AND STRUCTURE REFINEMENT FOR THE TITLE COMPOUND					
Empirical formula	$C_{16}H_{16}N_2O_3$				
Formula weight	284.31				
Temperature	298(2) K				
Wavelength	0.71073 Å				
Crystal system	Triclinic				
Space group	P-1				
Cell dimensions	a = 4.8140(5) Å, $b = 7.0401(8)$ Å,				
	$c = 20.700(2) \text{ Å}; \alpha = 90.090(1)^{\circ},$				
	$\beta = 96.310(2)^{\circ}, \gamma = 94.110(2)^{\circ}$				
Volume	695.48(13) Å ³				
Ζ	2				
Density (calculated)	1.358 mg/m ³				
Absorption coefficient	0.095 mm ⁻¹				
F(000)	300				
Index ranges	$-5 \le h \le 5, -6 \le k \le 8, -24 \le 1 \le 22$				
Reflections collected/unique	3568/2421 [R(int) = 0.0350]				
Independent reflections	515				
Data/restraints/parameters	2421/0/192				
Goodness of fit indicator	1.033				
$R [I > 2\sigma(I)]$	$R_1 = 0.0625, wR_2 = 0.1078$				
Largest diff. peak and hole	0.183 and -0.207 e·Å ⁻³				

RESULTS AND DISCUSSION

X-ray crystallographic analysis revealed the crystal structure of the title compound. The structure is shown in Fig. 1 and packing arrangement of the unit cell is shown in Fig. 2. Selected bond distances and angles are listed in Table-2. Hydrogen bonds for the title compound is listed in Table-3. The crystal structure is only built up by the $C_{16}H_{16}N_2O_3$ molecules, in which all bond lengths are in normal ranges. The two benzene rings in the molecule form a dihedral angle of $3.05(2)^\circ$.

There is one strong intramolecular O-H···N hydrogen bond between the hydroxyl (O2-H2) groups and the Schiff base nitrogen (N2) atom, with the distance of d(N2-O2) = 2.593(4) Å. In the crystal structure, each molecule links other three molecules into an infinite 2D supramolecular structure^{13,14} by three pairs of intermolecular O1-H1···N1, C1-H1A···O1 and C16-H16B···O3 hydrogen bonds.

Fig. 1. Molecule structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30 % probability level

Fig. 2. Packing arrangement of the unit cell of the title compound. H atoms are omitted for clarity

TABLE-3								
HYDROGEN BONDS [Å, °] FOR THE TITLE COMPOUND								
D-H…A	d(D-H)	$d(H \cdot \cdot \cdot A)$	∠DHA	d(D - A)				
O2-H2…N2	0.82	1.86	148	2.593(4)				
O1-H1…N1	0.82	2.10	149	2.828(4)				
C1-H1A…O1	0.96	2.56	145	3.396(4)				
C16-H16BO3	0.96	2.57	153	3.458(4)				

TABLE-2 SELECTED BOND DISTANCES (Å) AND ANGLES (°) FOR THE TITLE COMPOUND								
Bond	Lengths	Bond	Lengths	Bond	Lengths			
N(1)-C(2)	1.275(4)	C(2)-C(3)	1.478(4)	C(10)-C(15)	1.391(4)			
N(1)-O(1)	1.410(3)	C(3)-C(8)	1.388(4)	C(10)-C(11)	1.403(4)			
N(2)-C(9)	1.279(4)	C(3)-C(4)	1.390(4)	C(11)-C(12)	1.397(5)			
N(2)-C(6)	1.427(4)	C(4)-C(5)	1.368(5)	C(12)-C(13)	1.366(4)			
O(2)-C(11)	1.343(4)	C(5)-C(6)	1.373(4)	C(13)-C(14)	1.397(4)			
O(3)-C(13)	1.375(4)	C(6)-C(7)	1.377(4)	C(14)-C(15)	1.370(5)			
O(3)-C(16)	1.418(4)	C(7)-C(8)	1.384(5)					
C(1)-C(2)	1.491(4)	C(9)-C(10)	1.434(5)					
Bond	Angles	Bond	Angles	Bond	Angles			
C(2)-N(1)-O(1)	113.8(3)	C(4)-C(5)-C(6)	121.8(3)	O(2)-C(11)-C(12)	117.6(4)			
C(9)-N(2)-O(6)	123.1(3)	C(5)-C(6)-C(7)	118.1(3)	O(2)-C(11)-C(10)	121.5(3)			
C(9)-N(2)-O(6) C(13)-O(3)-C(16)	123.1(3) 117.3(3)	C(5)-C(6)-C(7) C(5)-C(6)-N(2)	118.1(3) 117.6(3)	O(2)-C(11)-C(10) C(12)-C(11)-C(10)	121.5(3) 120.9(4)			
C(9)-N(2)-O(6) C(13)-O(3)-C(16) N(1)-C(2)-C(3)	123.1(3) 117.3(3) 116.7(3)	C(5)-C(6)-C(7) C(5)-C(6)-N(2) C(7)-C(6)-N(2)	118.1(3) 117.6(3) 124.3(3)	O(2)-C(11)-C(10) C(12)-C(11)-C(10) C(13)-C(12)-C(11)	121.5(3) 120.9(4) 119.6(4)			
C(9)-N(2)-O(6) C(13)-O(3)-C(16) N(1)-C(2)-C(3) N(1)-C(2)-C(1)	123.1(3) 117.3(3) 116.7(3) 123.5(3)	C(5)-C(6)-C(7) C(5)-C(6)-N(2) C(7)-C(6)-N(2) C(6)-C(7)-C(8)	118.1(3) 117.6(3) 124.3(3) 119.9(4)	O(2)-C(11)-C(10) C(12)-C(11)-C(10) C(13)-C(12)-C(11) C(12)-C(13)-O(3)	121.5(3) 120.9(4) 119.6(4) 124.9(3)			
C(9)-N(2)-O(6) C(13)-O(3)-C(16) N(1)-C(2)-C(3) N(1)-C(2)-C(1) C(3)-C(2)-C(1)	123.1(3) 117.3(3) 116.7(3) 123.5(3) 119.8(3)	C(5)-C(6)-C(7) C(5)-C(6)-N(2) C(7)-C(6)-N(2) C(6)-C(7)-C(8) C(7)-C(8)-C(3)	118.1(3) 117.6(3) 124.3(3) 119.9(4) 122.7(3)	O(2)-C(11)-C(10) C(12)-C(11)-C(10) C(13)-C(12)-C(11) C(12)-C(13)-O(3) C(12)-C(13)-C(14)	121.5(3) 120.9(4) 119.6(4) 124.9(3) 120.9(4)			
C(9)-N(2)-O(6) C(13)-O(3)-C(16) N(1)-C(2)-C(3) N(1)-C(2)-C(1) C(3)-C(2)-C(1) C(8)-C(3)-C(4)	123.1(3) 117.3(3) 116.7(3) 123.5(3) 119.8(3) 116.0(3)	C(5)-C(6)-C(7) C(5)-C(6)-N(2) C(7)-C(6)-N(2) C(6)-C(7)-C(8) C(7)-C(8)-C(3) N(2)-C(9)-C(10)	118.1(3) 117.6(3) 124.3(3) 119.9(4) 122.7(3) 123.0(3)	O(2)-C(11)-C(10) C(12)-C(11)-C(10) C(13)-C(12)-C(11) C(12)-C(13)-O(3) C(12)-C(13)-C(14) O(3)-C(13)-C(14)	121.5(3) 120.9(4) 119.6(4) 124.9(3) 120.9(4) 114.2(3)			
C(9)-N(2)-O(6) C(13)-O(3)-C(16) N(1)-C(2)-C(3) N(1)-C(2)-C(1) C(3)-C(2)-C(1) C(8)-C(3)-C(4) C(8)-C(3)-C(2)	$123.1(3) \\117.3(3) \\116.7(3) \\123.5(3) \\119.8(3) \\116.0(3) \\121.8(3)$	C(5)-C(6)-C(7) C(5)-C(6)-N(2) C(7)-C(6)-N(2) C(6)-C(7)-C(8) C(7)-C(8)-C(3) N(2)-C(9)-C(10) C(15)-C(10)-C(11)	$118.1(3) \\117.6(3) \\124.3(3) \\119.9(4) \\122.7(3) \\123.0(3) \\117.2(3)$	$\begin{array}{c} O(2)-C(11)-C(10)\\ C(12)-C(11)-C(10)\\ C(13)-C(12)-C(11)\\ C(12)-C(13)-O(3)\\ C(12)-C(13)-O(3)\\ C(12)-C(13)-C(14)\\ O(3)-C(13)-C(14)\\ C(15)-C(14)-C(13) \end{array}$	121.5(3) 120.9(4) 119.6(4) 124.9(3) 120.9(4) 114.2(3) 118.8(4)			
C(9)-N(2)-O(6) C(13)-O(3)-C(16) N(1)-C(2)-C(3) N(1)-C(2)-C(1) C(3)-C(2)-C(1) C(8)-C(3)-C(4) C(8)-C(3)-C(2) C(4)-C(3)-C(2)	$123.1(3) \\117.3(3) \\116.7(3) \\123.5(3) \\119.8(3) \\116.0(3) \\121.8(3) \\122.2(3)$	C(5)-C(6)-C(7) C(5)-C(6)-N(2) C(7)-C(6)-N(2) C(6)-C(7)-C(8) C(7)-C(8)-C(3) N(2)-C(9)-C(10) C(15)-C(10)-C(11) C(15)-C(10)-C(9)	$118.1(3) \\117.6(3) \\124.3(3) \\119.9(4) \\122.7(3) \\123.0(3) \\117.2(3) \\121.9(4)$	$\begin{array}{c} O(2)-C(11)-C(10)\\ C(12)-C(11)-C(10)\\ C(13)-C(12)-C(11)\\ C(12)-C(13)-O(3)\\ C(12)-C(13)-O(3)\\ C(12)-C(13)-C(14)\\ O(3)-C(13)-C(14)\\ C(15)-C(14)-C(13)\\ C(14)-C(15)-C(10) \end{array}$	121.5(3) $120.9(4)$ $119.6(4)$ $124.9(3)$ $120.9(4)$ $114.2(3)$ $118.8(4)$ $122.6(4)$			

ACKNOWLEDGEMENTS

The authors acknowledged the Support of Science and Technology Fund of Lanzhou Jiaotong University (ZC2012003) and the Fundamental Research Funds for the Gansu Province Universities (212086).

REFERENCES

- 1. S. Akine, T. Taniguchi, W.K. Dong and T. Nabeshima, *J. Org. Chem.*, **70**, 1704 (2005).
- 2. K. Narasaka and M. Kitamura, Eur. J. Org. Chem., 4505 (2005).
- W.K. Dong, Y.X. Sun, Y.P. Zhang, L. Li, X.N. He and X.L. Tang, *Inorg. Chim. Acta*, **362**, 117 (2009).
- 4. W.K. Dong, Y.X. Sun, X.N. He, J.F. Tong and J.C. Wu, *Spectrochim. Acta A*, **76**, 476 (2010).

- 5. W.K. Dong, X.N. He, H.B. Yan, Z.W. Lv, X. Chen, C.Y. Zhao and X.L. Tang, *Polyhedron*, **28**, 1419 (2009).
- W.K. Dong, J.G. Duan, Y.H. Guan, J.Y. Shi and C.Y. Zhao, *Inorg. Chim. Acta*, **362**, 1129 (2009).
- 7. W.K. Dong, Y.X. Sun, C.Y. Zhao, X.Y. Dong and L. Xu, *Polyhedron*, **29**, 2087 (2010).
- 8. W.K. Dong, L. Li, C.F. Li, L. Xu and J.G. Duan, *Spectrochim. Acta A*, **71**, 650 (2008).
- 9. S. Akine, T. Taniguchi and T. Nabeshima, *Angew. Chem. Int. Ed.*, **41**, 4670 (2002).
- 10. S. Akine, T. Taniguchi and T. Nabeshima, Inorg. Chem., 43, 6142 (2004).
- C. Policar, F. Lambert, M. Cesario and I. Morgenstern-badarau, *Eur. J. Inorg. Chem.*, **12**, 2201 (1999).
- 12. D.A. Atwood and M.J. Harvey, Chem. Rev., 101, 37 (2001).
- 13. W.K. Dong and J.G. Duan, J. Coord. Chem., 61, 781 (2007).
- H.L. Wu, X.C. Huang, J.K. Yuan, F. Kou, F. Jia, B. Liu and Y. Bai, Z. Naturforsch., 66b, 1049 (2011).