

KF/Al₂O₃ Catalyzed One-Pot Three-Component Process for the Synthesis of Some 2-Thioxoquinazolin-4(1*H*)-one Derivatives

FARHAD HATAMJAFARI, FARZAD ALIJANICHAKOLI* and MOHAMMADJAVAD MOHAMMADMOHTASHAM

Department of Chemistry, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran

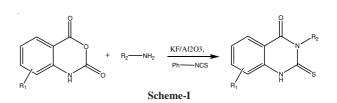
*Corresponding author: E-mail: farzadalijanichakoli@yahoo.com

(Received: 19 June 2012;

Accepted: 22 April 2013)

AJC-13381

Three component one-pot reaction for synthesis of 2-thioxoquinazolin-4(1H)-ones are given by the condensation of isatoic anhydride, primary amine and phenyl isothiocyanate by using KF/Al₂O₃ as a environmentally friendly catalyst.


Key Words: 2-Thioxoquinazolin-4(1H)-one, One-pot, Three component, KF/Al₂O₃, Microwave.

INTRODUCTION

Today multicomponent reactions (MCRs) emphasizes the development of organic compounds as drug precursor on environmentally friendly when synthesized compounds without solvent and catalyst or water solvent and non-toxic catalyst. Multicomponent reactions aid to play a key role in the development of synthetic compounds because of their possible generation of an adduct in a single step from multi reactants usually used by bond-forming efficiency¹. Application of multicomponent reaction is on the high chemoselectivity in the presence of all the reactants².

Quinazolinones are very important structure in the field of drug chemistry with wide range of biological and pharmacological activity³. The quinazolinones scaffold are important class of fused heterocycles with a show promise such as antiinflammatory⁴, antimalarial⁵, anti HIV⁶ and anti cancer⁷ and dihydrofolate reductase inhibitors⁸. Moreover, few methods are reported for the synthesis of 2-thioxoquinazolin-4-ones, as most of the methods reported are for quinazolin-2,4(1*H*,3*H*)diones^{9,10}.

Several methods have been proposed for quinazolinones over the years, provide a simple method with the environmentally friendly catalyst for synthesis of 2-thioxoquinazolinones. As part of our ongoing interest in developing new methods for the synthesis of various heterocyclic scaffolds¹¹⁻¹⁷, therefore in this study, we have synthesized derivatives of 2-thioxoquinazolin-4(1*H*)-one with the condensation of isatoic anhydride, primary amine and phenyl isothiocyanate by using KF/Al₂O₃ as a catalyst (**Scheme-I**).

IR spectral data of 3-benzyl-2,3-dihydro-2-thioxoquinazoline-4(1H)-one (4b) shows the characteristic single broad N-H peak in the range 3280 cm⁻¹, a sharp C=O peak at 1698 cm⁻¹ and C=S peak at 1185 cm⁻¹. ¹H NMR shows characteristic broad singlet for N-H at δ 12.01 in addition to those due to aromatic protons at d 7.33-7.86 ppm¹³. In ¹³C NMR C=S appears at δ 170 C=O appears at δ 161 ppm. Therefore in the present investigation we have used KF/Al₂O₃ is a widely used solid supported reagent which is cheap and easy for catalysis of a variety of reactions. Due to its strongly basic nature it has been used as a replacement for organic bases in a number of organic reactions¹⁸. Variously substituted isothiocyanates were condensed isatoic anhydride, primary amine and phenyl isothiocyanate in water by using KF/Al₂O₃ as a environmentally friendly catalyst to afford the desired 2-thioxoquinazolin-4(1H)-one derivatives in 60-79 % yields and was completed within 90-140 min (Table-1).

All chemicals were obtained from Merck or Fluka without further purification. Melting points were determined on an Electrothermal 9100 melting point apparatus and are uncorrected. IR spectra were measured on a Shimadzu IR-470 spectrophotometer. ¹H and ¹³C NMR spectra were determined on Bruker 500 DRX AVANCE instrument at 500 and 125 MHz, respectively. The element analyses (C, H, N) were obtained from a Carlo ERBA Model EA 1108 analyzer carried out on Perkin-Elmer 240c analyzer.

TABLE-1					
SYNTHESIS OF VARIOUS 2-THIOXOQUINAZOLIN-4(1H)-ONES FROM DIFFERENT					
ISATOIC ANHYDRIDE, PRIMARY AMINE AND ISOTHIOCYANATE					
Entry	R ₁	$R_2 - NH_2$	m.p. (°C)	Yields (%)	Reaction time (min)
4 a	Н	NH ₂	307-309	76	100
4b	Н	NH ₂	253-256	70	120
4c	meta-Cl		324-325	65	120
4d	Н	NH ₂	264-266	60	140
4 e	Н		317-319	76	90

Typical synthesis of compounds (4a-e): A mixture of KF/Al₂O₃ (0.2 g), isatoic anhydride (1 mmol), primary amine (2 mmol) and phenyl isothiocyanate (1 mmol) was refluxed in ethanol (5 mL) for 90-140 min. The progress of reaction was monitored by TLC. The mixture was extracted with 3 cm \times 30 cm CH₂Cl₂, filtered and dried with anh. Na₂SO₄ sulphate. The solution was dried under high vacuum and the resulting solid residue recrystallized from ethanol to give the pure crystalline solid (**4a-e**).

2,3-Dihydro-3-phenyl-2-thioxoquinazolin-4(1*H***)-one (4a**): White powder, m.p. 307-309 °C; IR (KBr, ν_{max} , cm⁻¹): 3239 (N-H), 3091 (C-H_{arom}), 1676 (C=O), 1189 (C=S); ¹H NMR (500 MHz, DMSO): δ = 7.29-7.96 (m, 9H, CH_{arom}), 12.03 (s, 1H, NH); ¹³C NMR (125 MHz, DMSO): 118.6, 119.1, 121.3, 124.6, 125.0, 128.8, 129.9, 132.8, 137.1, 138.6, 158.8, 177.0 ppm. MS (m/z, %): 254 (M⁺). Anal. calcd. (%) for C₁₄H₁₀N₂OS: C, 66.12; H, 3.96; N, 11.02. Found (%): C, 65.71; H, 3.81; N, 10.74.

3-Benzyl-2,3-dihydro-2-thioxoquinazolin-4(1*H***)-one (4b**): White powder, m.p. 253-256 °C; IR (KBr, v_{max} , cm⁻¹): 3280 (N-H), 3080 (C-H_{arom}), 1698 (C=O), 1185 (C=S); ¹H NMR (500 MHz, DMSO): δ = 5.59 (s, 2H), 7.33-7.86 (m, 8H, CH_{arom}), 12.01 (s, 1H, NH); ¹³C NMR (125 MHz, DMSO): 44.8, 111.5, 114.4, 122.8, 125.1, 126.7, 127.8, 128.9, 134.1, 135.7, 138.1, 161.0, 170.0 ppm. MS (m/z, %): 268 (M⁺). Anal. calcd. (%) for C₁₅H₁₂N₂OS: C, 67.14; H, 4.51; N, 10.44. Found (%): C, 66.89; H, 4.21; N, 10.26.

7-Chloro-2,3-dihydro-3-phenyl-2-thioxoquinazolin-4(1*H***)-one (4c):** White powder, m.p. 324-326 °C; IR (KBr, v_{max} , cm⁻¹): 3188 (N-H), 3010 (C-H_{arom}), 1700 (C=O), 1200 (C=S); ¹H NMR (500 MHz, DMSO): δ = 7.30-7.92 (m, 8H, CH_{arom}), 12.06 (s, 1H, NH); ¹³C NMR (125 MHz, DMSO): 20.1, 55.5, 113.1, 115.2, 123.9, 124.2, 125.7, 126.5, 129.2, 131.9, 135.6, 138.8, 153.7, 169.3 ppm. MS (m/z, %): 288 (M⁺). Anal. calcd. (%) for C₁₄H₉N₂OSCl: C, 58.23; H, 3.14; N, 9.70. Found (%): C, 57.95; H, 2.85; N, 9.58.

2,3-Dihydro-3-(1-phenylethyl)-2-thioxoquinazolin-4(1*H*)-one (4d): White powder, m.p. 264-266 °C; IR (KBr, v_{max} , cm⁻¹): 3291 (N-H), 3036 (C-H_{arom}), 1677 (C=O), 1179 (C=S); ¹H NMR (500 MHz, DMSO): δ = 1.79 (d, *J* = 7.1 Hz, 3H), 2.02 (q, *J* = 7.1 Hz, H), 7.15-7.82 (m, 9H, CH_{arom}), 11.96 (s, 1H, NH); ¹³C NMR (125 MHz, DMSO): 27.7, 46.5, 58.2, 113.8, 114.5, 115.8, 118.6, 121.9, 125.6, 128.5, 132.4, 134.9, 138.0, 145.4, 147.3, 160.1, 171.9, ppm. MS (m/z, %): 282 (M⁺). Anal. calcd. (%) for C₁₆H₁₄N₂OS: C, 68.06; H, 5.00; N, 9.92. Found (%): C, 67.81; H, 4.76; N, 9.71.

3-(4-Chlorobenzyl)-2,3-dihydro-2-thioxoquinazolin-4(1*H***)-one (4e): White powder, m.p. 317-319 °C; IR (KBr, v_{max}, cm⁻¹): 3122 (N-H), 3032 (C-H_{arom}), 1681 (C=O), 1209 (C=S); ¹H NMR (500 MHz, DMSO): \delta = 5.16 (s, 2H), 7.16-7.79 (m, 8H, CH_{arom}), 12.02 (s, 1H, NH); ¹³C NMR (125 MHz, DMSO): 46.4, 115.8, 122.4, 125.0, 126.7, 127.7, 130.6, 133.2, 134.5, 140.8, 145.8, 157.1, 172.3 ppm. MS (m/z, %): 302 (M⁺). Anal. calcd. (%) for C₁₅H₁₁N₂OSCI: C, 59.50; H, 3.66; N, 9.25. Found (%): C, 59.33; H, 3.50; N, 9.18.**

Conclusion

We have developed an efficient, one-pot synthesis of 2-thioxoquinazolin-4(1H)-ones by the condensation of isatoic anhydride, primary amine and phenyl isothiocyanate by using KF/Al₂O₃ in providing increased yields. KF/Al₂O₃ can act as heterogeneous catalyst which is low cost and environmentally friendly.

ACKNOWLEDGEMENTS

The authors gratefully acknowledged the financial support from the Research Council of Tonekabon Branch Islamic Azad University, Iran.

REFERENCES

- K.C. Nicolaou, D.J. Edmonds and P.G. Bulger, *Angew. Chem. Int. Ed.*, 45, 7134 (2006).
- 2. F. Hatamjafari and N. Montazeri, Turkish J. Chem., 33, 797 (2009).
- G.P. Ellis, Synthesis of Fused Heterocycles., John Wiley & Sons, Ltd.: Chichester, 47 (1987).
- K. Tereshima, H. Shimamura, A. Kawase, Y. Tanaka, T. Tanimura, T. Kamisaki, Y. Ishizuka and M. Sato, *Chem. Pharm. Bull.*, 45, 2021 (1995).

- 5. D. Gueyrard, V. Gurnel, O. Leoni, S. Palmieri and P. Rollin, *Heterocycles*, **32**, 827 (2000).
- 6. S.N. Pandeya, D. Sriram, G. Nath and E. Declerca, *Pharm. Acta Helv.*, **74**, 11 (1999).
- 7. J.F. Wolfe, T.L. Rathman, M.C. Sleevi, J.S.A. Campbell and T.D. Greenwood, *J. Med. Chem.*, **33**, 161 (1990).
- A. Rosowsky, C.E. Mota, J.E. Wright and S.F. Queener, *J. Med. Chem.*, 37, 4522 (1994).
- 9. N.D. Moirangthem and W.S. Laitonjam, *Beilstein J. Org. Chem.*, 6, 1056 (2010).
- 10. A. Saeed and U. Flörke, Crystals, 1, 254 (2011).
- 11. J. Azizian, F. Hatamjafari, A.R. Karimi and M. Shaabanzadeh, *Synthesis*, 765 (2006).

- 12. J. Azizian, M. Shaabanzadeh, F. Hatamjafari and M.R. Mohammadizadeh, *Arkivoc*, 47 (2006).
- 13. F. Hatamjafari, Synth. Commun., 36, 3563 (2006).
- 14. J. Azizian, F. Hatamjafari and A.R. Karimi, *J. Heterocycl. Chem.*, **43**, 1349 (2006).
- F. Hatamjafari, N. Montazeri and K. Pourshamsian, Asian J. Chem., 23, 3287 (2011).
- 16. F. Hatamjafari, Orient. J. Chem., 28, 141 (2012).
- 17. F. Hatamjafari, Asian J. Chem., 25, 2339 (2013).
- 18. B.E. Blass, Tetrahedron, 58, 9301 (2002).