

Measurement of ¹²⁹I in an Inorganic Adsorbent

K.C. CHOI*, B.C. SONG, J.H. AHN, Y.J. PARK and K.S. SONG

Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon 305-600, Republic of Korea

*Corresponding author: E-mail: nkcchoi@kaeri.re.kr

(Received: 25 August 2012;

Accepted: 8 May 2013)

AJC-13464

A separation and recovery method for ¹²⁹I in an inorganic adsorbent (Ag¹²⁹I-zeolite) was used as a trapping filter to remove fission products and nuclear fission-generated gas. ¹²⁹I was added to the AgX-exchanged zeolite and the radioactivity of the Ag¹²⁹I-zeolite was determined as a reference substance for ¹²⁹I. The recovery rate for ¹²⁹I after alkali fusion was 76.3 ± 2.8 %. To investigate the influence of ¹²⁹I in the ⁹⁹Tc (Re)-containing inorganic adsorbent on separation and quantification, the recovery rate for ¹²⁹I was measured after adding Re to the adsorbent. Furthermore, the recovery rate for ¹²⁹I was evaluated to identify the influence of ¹⁴C in the eluted solution on ¹²⁹I measurement. The results show that separation and quantification of ¹²⁹I was not influenced by ¹⁴C in the eluted solution.

Key Words: ¹²⁹I, Separation, Inorgnic adsorbent, Re, ¹⁴C.

INTRODUCTION

Research and case studies have clarified the effect of iodine on the environment and people. Representative examples have shown that iodine is accumulated in mammalian thyroid and causes thyroid gland cancer as well as contributes to destruction of the ozone layer¹⁻⁴. ¹²⁹I has the longest half-life $(T_{1/2} = 1.57 \times 10^7 \text{ y})$ among volatile radionuclides and a large amount of iodine is produced through man-made nuclear activity. However, it is also generated from cosmic rays⁵. In particular, large quantities of iodine are produced from reprocessing spent nuclear fuel and in nuclear experiments involved in nuclear weapon production. Furthermore, for a nuclear power plant, the ¹²⁹I yield is 0.8 %^{6,7}. Thus, iodine is emitted directly or indirectly through many paths into the natural environment. In particular, iodine can form a highly volatile compound through bonding with an organic solvent (tributyl phosphate), which is extracted in the PUREX process for reprocessing spent fuel⁸. Organic iodine with these methyl groups can be easily removed when it will otherwise be released into the environment or absorbed inside the containment building^{9,10}. In addition, human health may be threatened because it is highly volatile.

Therefore, more methods to suppress the release of volatile iodine into the external environment are necessary. In facilities for processing or dismantling spent fuel, a device to remove the fission radionuclides and dust must be constructed. The filtration membrane or inorganic adsorbent must remove or effectively collect fission products. In particular, iodine removal equipment can effectively remove iodine from this released media because dusted or gaseous CO₂, inert gas, nitrogen oxide, tributyl phosphate, elemental iodine and organic iodine are in the "off-gas"^{11,12}. In general, radioiodine removal through an adsorption method using Iodox, Mercurex washing methods and an inorganic solid adsorbent are wellknown methods for reprocessing spent fuel¹³. Iodine-friendly silver or another metal-substituted zeolite are an excellent adsorbent for the iodine produced in nuclear facilities. In particular, zeolite is non-combustible and is a low explosion hazard. Furthermore, the absorption efficiency is good at high temperatures¹². ¹²⁹I, which is a fission product, is difficult to directly assay because the specific activity of its radiation is low^{6,14}. Therefore, pretreatment and separation of iodine must be preceded by separation using inorganic adsorbents installed at the outlet of a radioactive waste facility. Well-known chemical separation methods for iodine include an acid-leaching elution¹⁵, alkali fusion¹⁴, low-temperature distillation¹⁶ and ionexchange resin separation methods^{17,18}. Acid-leaching is a method to separate iodine in extracts through oxidation and reduction and alkali fusion is a method for melting samples with alkali fusion agents and oxidants. Furthermore, the lowtemperature distillation and ion-exchange resin separation methods use characteristics particular to iodine.

In this study, a chemical separation and quantitative analysis method was developed for ¹²⁹I using Ag¹²⁹I-zeolite as an inorganic adsorbent (AgX-zeolite) and trapping filter. Trapping filters are installed to remove fission products and gas released during high-temperature oxidation of spent fuels. For this process, ¹²⁹I was absorbed on an AgX-exchanged zeolite to prepare a standard sample and various separation methods for iodine were applied and reviewed¹⁹. In addition, the influence of iodine separation on volatile β -emitting radionuclides (⁹⁹Tc and ¹⁴C) with ¹²⁹I was investigated.

EXPERIMENTAL

Reagent grade KOH and KNO₃ (Aldrich) were used as the alkali fusion agent and KI was added as a ¹²⁹I carrier. The ¹²⁹I used to trace radioiodine was first diluted in 2,138 Bq/ mL, NaI/0.1 M Na₂S₂O₃ (NIST-SRM-4949 c). Anion exchange resin (AG 1x2, 50-100 mesh, Cl⁻ form, Bio-rad Co.) for iodine absorption was used after it was washed with a dilute acid. The organic solvent used for extraction was a Merck product. For radiological ¹²⁹I monitoring, a low-energy γ -ray spectrum analyzer (model GLP 36360/13P4, AMETEC) was used.

Preparation of AgX ($X = {}^{129}I$) zeolite: In a glove box (90 cm, W × 180 cm, H) that had been charged with N₂ gas, 5 g of AgX-exchanged zeolite was added to a pH 10 carbonate buffer solution in a plastic beaker; 10.0 Bq of ${}^{129}I$ was then added into the beaker. Then, 20 mL of H₂O and 6 mL of NaI (1.5 g NaI) were added to the beaker. The contents of the beaker were stirred with a magnetic bar to facilitate radioiodine absorbance with the AgX-exchanged zeolite. After filtering with Whatman filter paper #42, the residue was dried under an IR lamp. Finally, the ${}^{129}I$ radioactivity in the AgI-zeolite was measured using a radioactivity counter.

Application of the alkali fusion method: The dried AgIzeolite (2.0 g) was placed into a 50 mL platinum crucible, into which 0.5 g of KNO₃ (oxidant), 5 g of KOH (fusion agent) and 1.0 mL of standard KI solution (μ g/mL) were added. After mixing well, the crucible was covered with a lid and the furnace temperature was adjusted to 100-120 °C for drying. The temperature was then maintained at 200 °C for *ca*. 1 h and was then raised slowly to 450 °C. The fused solid was dissolved in a dilute acid for a stock solution.

Application of the acid leaching method: The 2 g dried AgI-zeolite was placed into a 250 mL plastic bottle; 50 mL distilled water and 10 mg KI (carrier) were added. Finally, 50 mL of 10 M HNO₃ (leaching agent) was added. Iodine was then leached by shaking the plastic bottle for 4-5 h. After leaching, the leached solution was filtered using a suction filter device. The filtrate was used as a stock solution for the chemical separation of ¹²⁹I.

Separation of the¹²⁹**I using the anionic exchange resin:** The pH 10 buffer solution (5 mL), 10 mg of KI and 5 g of anionic resin (AG1-X 4 Resin) were placed into a plastic beaker and stirred with a magnetic bar for 12 h to absorb the iodine. Thereafter, it was filtered with Whatman #42 filter paper and the aqueous solution was discarded. The resin was then used to fill a polyethylene tube 10 mm in diameter and 140 mm long. Next, the resin was washed with 10 mL distilled water 2 times. Iodine was then eluted with 20 mL of 10 % NaOCl at a 0.4 mL/min flow rate.

The 10 mL eluted solution was poured into a 50 mL extraction tube and 1 mL of HNO₃ and 1,000 mg of NH₂OH·HCl were added. Thereafter, by adding 10 mL of CHCl₃, iodine was extracted for 3 min. In the extraction solution, the aqueous phase was discarded and only 5 mL organic phase was placed into a new extraction tube. After adding 5 mL of 0.1 N NaHSO₃ solution into the separated organic phase in the tube, the solution was back-extracted to the aqueous phase. The precipitate formed by 0.1 M AgNO₃ in the aqueous phase was aged for 5 min at 70 °C. After centrifuging, the sample was transferred to a Planchet; the final sample in the Planchet was dried below 70 °C and its activity was measured for 10,000 s with a lowenergy level gamma spectrometry system.

RESULTS AND DISCUSSION

Standardization of the reference AgX ($X = {}^{129}I$) zeolite: An inorganic adsorbent and Ag-substituted AgX-exchanged zeolite can be used to remove the volatile fission gas generated from highly oxidative spent fuel processing and can be installed in the exhaust facilities of a spent fuel reprocessing plant or nuclear fuel processing facilities.

As a reference concentration of ¹²⁹I, AgX (X = ¹²⁹I) was synthesized to develop a separation method for ¹²⁹I in the inorganic absorbent. For homogeneity of the inorganic absorbent, the absorbent was ground and added to buffer solutions at pH 4, 7 and 10. Next, ungrounded absorbent was added to the buffer solutions to identify the effect of grinding. Finally, the concentrations of radioiodine (to use as a reference substance) were determined through measurement of ¹²⁹I in the residue and filtrate. Table-1 shows the measurement results for ¹²⁹I adsorption on the AgX-zeolite in the buffer solutions and the ¹²⁹I adsorbed in the pH 10 buffer solution was selected as the reference substance.

TABLE-1
CUMULATIVE YIELD OF IODINE ON

AgX EXCHANGE-ZEOLITE				
A. 1	Recovery (%)			
Adsorption	Not grinding		Grinding by agate mortar ^a	
build solution	Filtrate	Solid	Filtrate	Solid
pH 4, phthalate	33.3±3.5	40.8±4.5	30.1±3.5	55.5±3.2
pH 7, phosphate	30.0±2.3	43.1±2.7	29.5±2.3	58.2±2.0
pH10, carbonate	29.5±2.7	45.8±3.6	24.8±2.0	60.4 ± 2.2^{b}
^a Adopting as the decomposition method of the AgX exchange-zeolite used as the reference substance of this research. ^b It selects as the reference concentration of the AgI-zeolite for the analysis method development.				

Sample pretreatments for ¹²⁹I separation and quantitative analysis: A flowchart on the analysis process for separation and quantification of ¹²⁹I in the AgI-zeolite is shown in Fig. 1. In Fig. 1, the reference substance is determined through radioactivity measurements of ¹²⁹I in the synthesized zeolite. If the concentration of the reference iodine is determined, the alkali fusion and leaching-based ¹²⁹I separation methods can be compared. In the alkali fusion method, isolated I- is oxidized to I2 and eventually fused when KOH, KNO3 and KI are added to Ag¹²⁹I zeolite and heated in a furnace. In the acid leaching method, iodine can be leached when 1:1 nitric acid is added to Ag¹²⁹I-zeolite and slowly stirred. After pretreatment, the separated fusion solution and leachate are bound to the anionic resin (AG 1 x2, 50-100 mesh Cl⁻ form), placed in the column and eluted. The I⁻ bound to the anionic exchange resin is oxidized to nonvolatile iodine oxidation products, such as

Fig. 1. Schematic diagram for chemical analysis of ¹²⁹I in an inorganic absorbent (AgI-zeolite)

 IO_3^- or IO_4^- , when NaClO is used to elute. These nonvolatile oxidation products were then easily eluted from the resin (AG 1 x2, 50-100 mesh Cl⁻ form) because they have a relatively low affinity compared with other anions, such as Cl⁻, Br⁻ and NO₂⁻, HSO₃⁻ and NO₃⁻. After adding the NH₂OH·HCl and reducing, the remaining I₂ in the eluted solution was extracted by adding an organic solvent (CHCl₃) and then back-extracted with NaHSO₃ to an aqueous layer; I⁻ was used for the determination of the recovery rate. The recovery rates for iodine in the two separation methods are shown in Table-2. As shown in the results (Table-2), the recovery rate from the acid leaching method was low compared with the alkali fusion method, which is why the iodine complex with Ag in the zeolite was primarily not decomposed and most of the iodine complex remained in the zeolite.

Influence of the other volatile radionuclides: The inorganic adsorbent can also absorb volatile ¹⁴C, ⁹⁹Tc and radioactive gas generated from a spent fuels reprocessing facility

TABLE-2 RECOVERY RATE FOR ¹²⁹ I IN AgI-ZEOLITE			
AFTER SAMPLE PRETREATMENT Sample treatment method ^a			
Number of experiment	Alkali fusion ^b	Acid leaching ^c	
	Recovery (%)	Recovery (%)	
1	78.5	43.5	
2	74.6	48.2	
3	77.5	44.6	
4	73.5	45.8	
5	77.2	42.3	
Ave. (RSD) % 76.3. (2.8)		Ave. RSD) % 4.9 (5.0)	

^aI-zeolite does not strip with HNO₃. ^bAlkali fusion agents; flux (KOH), oxidant (KNO₃) and iodine carrier (KI); temperature, 450 °C. ^cAcid leaching agent; 50 mL H_2O + 50.0 mL10.0 M HNO₃, leaching time, 4 to 5 h.

and volatile ¹²⁹I. Thus, the influence of other volatile radionuclides for the separation and measurement of ¹²⁹I must be considered. First, Re, which is used as a monitoring nuclide for ⁹⁹Tc, was added to the Ag¹²⁹I-zeolite.

To identify the stripping efficiency of nitric acid, AgX (X = ¹²⁹I, Re) zeolite was used to strip before application of the alkali fusion method. For 0.5-10.0 M nitric acid, the recovery rate of Re was measured after stripping and the result is presented in Table-3. As shown in Table-3, the recovery rates when using higher concentration than 5 M of nitric acid were found to be close each other compared with when using lower than 5.0 M nitric acid. The measured recovery rates for the added Re and iodine were tabulated in Table-4. As can be seen in Table-4, the recovery rate for separation through alkali fusion after Re stripping with nitric acid is 72.3-72.5 % and the recovery rate for ¹²⁹I without adding Re is 76.3 ± 2.8 %, which is similar to the Re added sample. For Re detection at $2.26 \pm$ 9.2 %, the removal ratio of Re is 77.4 %, which is why 129 I easily reacts with Ag to form a stable AgI compound and the compound is easily dissolved in alkali-containing solutions but not in water or below 5 M acid.

TABLE-3 RECOVERY RATE FOR Re-AgX-ZEOLITE ^a CONFIRMED USING NITRIC ACID AFTER STRIPPING ^a			
Concentration of	10.0 mg Re added		
$HNO_{3}(M)$	Identified Re ^b	Recovery (%)	
0.5	5.32	53.2	
1.0	6.80	68.0	
3.0	8.02	80.2	
5.0	8.53	85.3	
8.0	8.61	86.1	
10.0	8.50	85.0	

^aIn the zeolite used in this experiment, the standard ¹²⁹I was not added. ^bBy using ICP-AES, the concentration of the Re measured.

TABLE-4 RECOVERY RATE FOR ¹²⁹ I AND Re IN AgI-ZEOLITE ^a			
No. of appariment	10.0 mg Re added		
No. of experiment	Recovery of ¹²⁹ I (%)	Removing rate (%) ^d	
1	72.5	77.0	
2	73.4	80.0	
3	70.7	79.0	
4	71.8	75.0	
5	73.0	76.0	
Ave. (RSD) %	72.3 (1.5)	77.4 (2.6)	
Ave. (RSD) //	12.5 (1.5)	77.4 (2.0)	

^aThe reference concentration of ¹²⁹I in AgI-zeolite was 3.58 Bq/mL. ^bStripping and alkali fusion were performed before measurement using LL- γ spectroscopy. ^cStripping and alkali fusion were performed before measurement with ICP-Aes. ^dRemoving rate of Re = Re (10 mg) added - Found Re x 100 (%).

Effect of (¹⁴C) on iodine measurement: Radioactive waste liquid produced from a nuclear power plant contains high concentrations of ¹⁴C, which may be several ten times higher than iodine. Therefore, the effect on the measurement of activity of ¹²⁹I from the β -emission nuclide, such as ¹⁴C, which is not separated and remains with iodine during pretreatment was studied. Fig. 2 shows β -spectra for several volatile radioactive nuclides (³H and ¹⁴C and ¹²⁹I) using a liquid scintillation counter. As shown in Fig. 2, since the spectra of ¹⁴C and ¹²⁹I are overlapped in the range of 250-450 channel band, ¹⁴C has to be removed for the determination of ¹²⁹I.

Channel

Fig. 2. β -Spectra for several volatile radioactive nuclides using a liquid scintillation counter

¹⁴C was removed by evaporation at a temperature lower than 70 °C after stripping the iodine in the organic phase to an aqueous phase. The radio-activities for ¹²⁹I before and after ¹⁴C removal were compared in Table-5. As shown in Table-5, the evaporation procedure for ¹⁴C did not induce co-evaporation of ¹²⁹I, while the temperature was below 70 °C. In addition, the recovery rates for the samples containing ¹²⁹I were compared and the results indicate that the effects from β-emission nuclide such as ¹⁴C can be removed using an evaporation procedure for the aqueous phase after the stripping procedure.

TABLE-5				
INTERFERENCE OF ¹⁴ C IN ¹²⁹ I MEASUREMENT ^a				
^{129}I	¹⁴ C	Measured	Recovery	Demark
added	added	(Bq/mL)	(%)	IXCIIIdi K
4.36	0	3.34 (¹²⁹ I)	76.5	¹⁴ C removed through
				evaporation ^b
4.36	0	3.37 (¹²⁹ I)	77.2	No evaporation
0	50	$0.04 (^{14}C)$	< 0.1	¹⁴ C removed through
				evaporation
4.36	50	18.60 (¹⁴ C)	37.2	No evaporation
4.36	50	3.21 (¹²⁹ I)	73.8	¹⁴ C removed though
				evaporation

^aAs to the recovery rate of ¹⁴C, measuring with the liquid scintillation counting method. ^bAs to the temperature of the evaporative dry, performing in the water bath under 70 °C.

Conclusion

The separation and quantification method for ¹²⁹I in an inorganic adsorbent ($Ag^{129}I$ -zeolite) was used as a trapping filter to remove fission products and nuclear fission-generated gas. To identify the recovery of ¹²⁹I, $Ag^{129}I$ -zeolite was prepared by adding ¹²⁹I to AgX-exchanged zeolite and ¹²⁹I in the zeolite was determined by radiochemical analysis. The average recovery rate for ¹²⁹I was 76.3 ± 2.8 % for the reference $Ag^{129}I$ -zeolite prepared using alkali fusion. Furthermore, the influence of ⁹⁹Tc (Re) and ¹⁴C-inclusion on the inorganic adsorbent for separation and recovery of ¹²⁹I was studied. It was found that there's no interference of ⁹⁹Tc (Re) for the measurement of ¹²⁹I after stripping by the nitric acid. It was also found no interference of ¹⁴C, when measuring ¹²⁹I of the evaporation of the separated solution at the temperature below 70 °C.

REFERENCES

- 1. J.K. Soldat, Health Phys., 30, 61 (1976).
- F.P. Brauer, J.K. Soldat, H. Tenny and R.S. Strebin Jr., IAEA-SM-180/ 34, 1 (1973).
- 3. P.J. Mango, T.C. Reavey and J.C. Pidianakis, ORP/SIP, 72 (1972).
- X.L. Hou, C.Y. Chen, W.J. Ding and C.F. Chai., *Biol. Trace Elem.*, 68, 69 (1999).
- R. Seki, E. Kmura, T. Takahashi and N. Ikeda, *J. Radioanal. Nucl. Chem.*, 138, 17 (1990).
- 6. F. Verrezen and C. Hurtgen, Appl. Radiat. Isot., 43, 61 (1992).
- T. Sakurai, A. Takahashi, N. Ishikawa and Y. Komaki, *Nucl. Technol.*, 85, 206 (1989).
- 8. J.P. Glatz, H. Bokelund and S. Zierfub, Radiochim. Acta, 51, 17 (1990).
- 9. B.G. Fritz and G.W. Patton, J. Environ. Radioact., 86, 64 (2006).
- 10. J.S. Edmonds and M. Morita, Pure Appl. Chem., 70, 1567 (1998).
- 11. J.G. Wilhelm et al., CONF-801083 (1981).
- W.A. Reed, I. May, F.R. Livens, J.M. Charnock, A.P. Jeapes, M. Gresley, R.M. Mitchell and P. Knight., J. Anal. At. Spectrom., 17, 541 (2002).
- 13. J.C. Mailen and T.O. Tiffany, J. Inorg. Nucl. Chem., 37, 1019 (1975).
- 14. L.C. Bate and J.R. Stokely, ORNL/TM-7449 (1980).
- 15. D. Geithoff and V. Schneider, KFK-258 (1964).
- 16. H. Kamioki and K. Hoizumi, JAERI-M 8070 (1979).
- H. Katagiri, O. Narita, A. Yamato and M. Kinoshita, J. Radioanal. Nucl. Chem., 138, 187 (1990).
- X. Hou, H. Dahlgard, B. Rietz, U. Jacobasen, S.P. Nielsen and A. Aarkrog, Anal. Chem., 71, 2745 (1999).
- 19. J.G. Wilhelm, KFK-2449 (1977).