

Microwave-Assisted Rapid Synthesis of Magnetite Fe₃O₄ Nanoparticles†

CHONGHAI DENG^{1,*}, HANMEI HU², XINQING GE², CHENGLIANG HAN¹ and DIFANG ZHAO^{1,*}

¹Department of Chemical and Materials Engineering, Hefei University, Hefei, Anhui Province, P.R. China ²School of Materials and Chemical Engineering, Anhui University of Architecture, Hefei, Anhiu Province, P.R. China

*Corresponding author: Tel: +86 551 2158436; E-mail: chdeng@hfuu.edu.cn

AJC-13255

Using FeSO₄(NH₄)₂SO₄·6H₂O and triethanolamine as iron and alkali sources, magnetite Fe₃O₄ nanoparticles are synthesized through a microwave-assisted chemical route. The as-prepared products are characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The sizes of Fe₃O₄ nanoparticles ranging from 5 to 20 nm are obtained. The magnetic property of the obtained Fe₃O₄ nanoparticles is studied by vibrating sample magnetometer. Magnetic analysis reveals that the Fe₃O₄ nanoparticles are ferromagnetic with a saturation magnetization of 25.5 emu·g⁻¹. The growth mechanism of Fe₃O₄ nanoparticles is also simply discussed.

Key Words: Fe₃O₄ nanoparticles, Microwave, Magnetic property.

INTRODUCTION

As an important member of spinel-type ferrite, magnetite (Fe₃O₄) has received much attention for its potential applications in lithium ion batteries¹, magnetic resonance imaging², biomolecular nanopatterning³, high-density data storage⁴, etc. Up to date, various methods were applied to prepare Fe₃O₄ nanomaterials, such as hydrothermal⁵, solvothermal⁶, ultrasonic chemical co-precipitation⁷, microwave-assisted⁸, external magnetic field-assisted reverse co-precipitation⁹, thermal decomposition of the ion alkoxide precursor¹⁰. To our best of knowledge, a convenient and operable method for synthesizing Fe₃O₄ nanoparticles is still a great challenge. In this work, Fe₃O₄ nanoparticles with diameters of 5-20 nm are fabricated through a simple, rapid microwave-assisted refluxing route. The crystal structure and morphology are studied by XRD, field-emission scanning electron microscope and TEM measurements. Magnetic property study shows that the as-prepared Fe₃O₄ nanoparticles are ferromagnetic.

EXPERIMENTAL

In a typical experimental procedure, 1 mmol ferrous ammonium sulfate [FeSO₄(NH₄)₂SO₄·6H₂O] was dissolved in 50 mL deionized water in a 100 mL conical flask to obtain solution A. Meanwhile, 0.75 mmol triethanolamine (C₆H₁₅NO₃) was dissolved in 10 mL deionized water to obtain solution B. Then, The solution B was added into the solution A under stirring. Keep stirring until the solution colour changing from dark green to grass green. The obtained grass green reaction solution was transferred into a MAS-II apparatus, then irradiated with microwave irradiation (power 300 w) under stirring with 500 r/min at the refluxing temperature of 90 °C for 8 min. After cooling down to room temperature and standing overnight, the black precipitate has strong magnetism and can be separated by a magnet, washed with anhydrous ethanol and deionized water for several times and then finally dried in a vacuum at 60 °C for 6 h.

Microwave-heating was performed on a MAS-II microwave synthesis/extraction reaction workstation (work frequency 2.45GHz, power adjustable range 0-1000W, Shanghai Sineo Microwave Chemistry Technology Co., Shanghai, China). The phase purity of the as-synthesized products was examined by X-ray diffraction using a Philips X'Pert PRO SUPER X-ray diffractometer equipped with graphite monochromatized CuK_{α} radiation ($\lambda = 1.541874$ Å). Field-emission scanning electron microscope images of the sample were taken on a field-emission microscope (JEOL JSM-6700F). The transmission electron microscope images of the samples were performed on a H-7650 transmission electron microscope.

RESULTS AND DISCUSSION

The crystal structure of as-prepared products was investigated by XRD analysis. Fig. 1 shows a typical XRD pattern of

*Presented to the 6th China-Korea International Conference on Multi-functional Materials and Application, 22-24 November 2012, Daejeon, Korea

the products. Seven prominent XRD peaks can be indexed to the Fe₃O₄ crystal planes of (111), (220), (311), (400), (422), (511) and (440), which present a face-centered cubic (fcc) spinel structure with the measured lattice constants a = 8.394 Å, agreeing with the standard values of the reported Fe₃O₄ data (JCPDS card No. 19-0629). The sharp diffraction peaks indicate that the synthesized Fe₃O₄ products are highly crystalline.

The morphology and microstructure of the prepared Fe_3O_4 products were characterized by field emission scanning electron microscopy and transmission electron microscopy. Fig. 2(a) and 2(b) present the field-emission scanning electron microscope images of Fe_3O_4 products prepared by a microwave-assisted refluxing route using $FeSO_4(NH_4)_2SO_4 \cdot 6H_2O$ as iron source in the triethanolamine solution, which indicate that nanoparticles are main products. Corresponding TEM images are shown in Fig. 2(c) and (d). We can see that the obtained Fe_3O_4 nanoparticles are homogeneously dispersed. The diameters of particles range from 5 to 20 nm.

In the reaction solution, as an alkaline organic amine, triethanolamine can hydrolyze to produce hydroxyl ion (OH⁻)

Fig. 2. Morphologies of the Fe₃O₄ products: (a, b) field-emission scanning electron microscope image, (c, d) TEM image

[eqn. (1)]. Simultaneously, a good deal of free ferrous ions (Fe^{2+}) were created through the dissociation of ferrous ammonium sulfate [FeSO₄(NH₄)₂SO₄] in the solution [eqn. (2)]. Under the condition of such alkaline environment, ferrous ion (Fe²⁺) would quickly react with hydroxyl ion (OH^{-}) to generate $Fe(OH)_2$ [eqn. (3)]. According to the different cell potentials in alkaline solution: $E^{0}Fe(OH)_{3}/Fe(OH)_{2} = -0.56 \text{ eV}; E^{0}O_{2}/OH^{-} = 0.401 \text{ eV},$ Fe(OH)₂ are unstable and has strong reducibility. By means of controlling oxidation time, Fe(OH)₂ can be partly oxidized into $Fe(OH)_3$ by O_2 from the air dissolved in water [eqn. (4)]. Finally, new-produced ferric hydroxide Fe(OH)₃ combines with pre-formed unreacted ferrous hydroxide Fe(OH)₂ to produce magnetite Fe_3O_4 through dehydration⁵ [eqn. (5)]. Besides as an alkaline reagent, it is presumed that triethanolamine can also acts as a modification agent influencing the morphology and size of Fe₃O₄ crystallites. Due to its strong complexing ability with metal ions, triethanolamine may selectively adsorb on the particular crystallographic facets of Fe₃O₄ crystals, prevent the aggregation between particles and lead to the formation of smaller nanoparticles. The possible chemical reaction to synthesize Fe₃O₄ nanoparticles are summarized as follows:

$$\begin{split} N(CH_2CH_2OH)_3 + H_2O &= (HOCH_2CH_2)_3NH^+ + OH^- \quad (1) \\ FeSO_4(NH_4)_2SO_4 \cdot 6H_2O &= Fe^{2+} + 2NH_4^+ + 2SO_4^{2-} + 6H_2O \quad (2) \\ Fe^{2+} + 2OH^- &= Fe(OH)_2 \quad (3) \\ 4Fe(OH)_2 + O_2 + 2H_2O &= 4Fe(OH)_3 \quad (4) \\ Fe(OH)_2 + 2Fe(OH)_3 &= Fe_3O_4 + 4H_2O \quad (5) \\ The magnetic property of the as-obtained Fe_3O_4 nanoparticles \end{split}$$

has been investigated on a vibrating sample magnetometer at room temperature. Fig. 3 shows magnetic hysteresis loop of as-obtained Fe₃O₄ nanoparticles measured at room temperature. Magnetic property study shows that the Fe₃O₄ nanoparticles are ferromagnetic. The coercivity (H_c) is 186 Oe and the remnant magnetization (M_r) is 5.86 emu·g⁻¹. The saturation magnetization (M_s) is 25.5 emu·g⁻¹, which is smaller than that of the corresponding bulk value of Fe₃O₄ (92 emu·g⁻¹)¹¹. The decrease of saturation magnetization magnetic triethanolamine molecules on the surface of Fe₃O₄ nanoparticles^{12,13}. The result agrees with the fact that the magnetization of small particles decreases as the particle size decreases.

Fig. 3. Magnetic hysteresis loop of the as-obtained Fe₃O₄ nanoparticles measured at room temperature

Conclusion

In conclusion, Fe₃O₄ nanoparticles with sizes of 5-20 nm were successfully prepared by employing a rapid microwaveassisted refluxing method using FeSO₄(NH₄)₂SO₄·6H₂O as iron source in the triethanolamine solution. Magnetic hysteresis loop shows that the as-obtained Fe₃O₄ nanoparticles are ferromagnetic. The coercivity (H_c) is 186 Oe and the remnant magnetization (M_r) is 5.86 emu·g⁻¹. The saturation magnetization (M_s) is 25.5 emu·g⁻¹. The method for synthesizing Fe₃O₄ nanoparticles is feasible, quick, nontoxic and eco-friendly.

ACKNOWLEDGEMENTS

This work was supported by the Fifth Science and Technology Foundation of Outstanding Youth of Anhui Province (Grant No. 10040606Y25 and 1308085JGD06), the Natural Science Foundation of Anhui Educational Committee (Grant No. 11040606M100), the Science and Research Foundation for Development of Hefei University (Grant No. 11KY01ZD) and the National Natural Science Foundation of China (Grant No. 20501002).

REFERENCES

- 1. Z.M. Cui, L.Y. Jiang, W.G. Song and Y.G. Guo, *Chem. Mater.*, **21**, 1162 (2009).
- 2. H. Tan, J.M. Xue, B. Shuter, X. Li and J. Wang, *Adv. Funct. Mater.*, **20**, 722 (2010).
- 3. Z. Gu, S.X. Huang and Y. Chen, Angew. Chem. Int. Ed., 48, 952 (2009).
- 4. T. Hyeon, Chem. Commun., 8, 927 (2003).
- Z.P. Cheng, X.Z. Chu, J.Z. Yin, H. Zhong and J.M. Xu, *Mater. Lett.*, 75, 172 (2012).
- X.Z. Wang, Z.B. Zhao, J.Y. Qu, Z.Y. Wang and J.S. Qiu, *Cryst. Growth* Des., 10, 2863 (2010).
- S. Wu, A.Z. Sun, F.Q. Zhai, J. Wang, W.H. Xu, Q. Zhang and A.A. Volinsky, *Mater. Lett.*, 65, 1882 (2011).
- F. Miao, W. Hua, L. Hu and K.M. Huang, *Mater. Lett.*, **65**, 1031 (2011).
 W. Zhang, S.Y. Jia, Q. Wu, J.Y. Ran, S.H. Wu and Y. Liu, *Mater. Lett.*,
- **65**, 1973 (2011).
- X.A. Li, B. Zhang, C.H. Ju, X.J. Han, Y.C. Du and P. Xu, J. Phys. Chem. C, 115, 12350 (2011).
- 11. D.H. Han, J.P. Wang and H.L. Luo, *J. Magn. Magn. Mater.*, **136**, 176 (1994).
- R. Ramesh, M. Rajalakshmi, C. Muthamizhchelvan and S. Ponnusamy, Mater. Lett., 70, 73 (2012).
- G.H. Gao, X.H. Liu, R.R. Shi, K.C. Zhou, Y.G. Shi, R.Z. Ma, E.J. Takayama-Muromachi and G.Z. Qiu, *Cryst. Growth Des.*, 10, 2888 (2010).