

Microwave Assisted Synthesis and Biological Activity of N-Aryl-N'-nicotinoyl Thiourea

JIAN-YING TONG¹, NA-BO SUN^{1,*} and Hong-Ke $Wu^{2,*}$

¹College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, P.R. China ²College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P.R. China

*Corresponding authors: E-mail: jianyington@gmail.com

(Received: 16 August 2012;

Accepted: 10 April 2013)

AJC-13220

A series of *N*-aryl-*N*⁻nicotinoyl thiourea derivatives were synthesized using microwave irradiation. The synthesized compounds were characterized by ¹H NMR, IR, MS and elemental analysis. Fungicidal activity of the compounds were evaluated through *G. zeae* Petch, *B. cinerea* Pers, *Phytophthora infestans* (Mont.) de Bary, *Botryosphaeria berengeriana* f. sp. *piricola* (Nose) koganezawa et Sakuma, *Fusarium oxysporum* f. sp. *cucumerinum* and *Cercospora arachidicola*. tests, their activity are moderate.

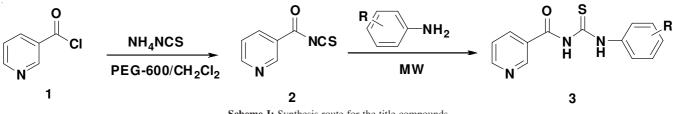
Key Words: Microwave irradiation, Acyl thiourea, Nicotinic acid, Fungicidal activity.

INTRODUCTION

Research on the synthesis and biological activity of heterocyclic compounds is an important developmental oriental in pesticide and medicine chemistry¹. It is well known that nicotinic acid and their derivatives exhibit excellent biological activity. Novel pyridine and related derivatives² are attractive molecules because their structure is present in several natural compounds, drugs or argochemicals. Additionally, various types of acyl-thiourea derivatives had comprehensive bioactivities, due to they held amide group³ and thioamide group.

Microwave technique, meanwhile, has been widely used for a variety of organic reactions, such as Claisen, heterocyclic synthesis, oxidation, hydrolysis, esterification, etherification and so on. Many reports⁴ have been published in favour of its considerable accelerations of the reaction rates and satisfactory yields.

In order to search for new compounds with good biological activity, ten thiourea derivatives (**3a-j**) were synthesized under microwave irradiation. Their structures are confirmed by ¹H NMR, IR, MS and elemental analysis. The preliminary biological tests show that these compounds had moderate fungicidal activity.


EXPERIMENTAL

Nicotinic acid, substituted aniline were commercially available. Melting points were determined using a X-4 melting apparatus and were uncorrected. Infrared spectra were recorded on a Bruker Equinox55 spectrophotometer as potassium bromide tablets. ¹H NMR spectra were measured on a Bruker AC-P500 instrument (300 MHz) using tetramethyl-silane as an internal standard and deuterochloroform as solvent. Mass spectra were recorded on a Thermo Finnigan LCQ Advantage LC/mass detector instrument. Elemental analyses were performed on a Yanaco MT-3CHN elemental analyzer.

Preparation of *N***-aryl-***N***'-nicotinoyl thiourea:** Nicotinic acid (5 g, 40 mmol) was added thionyl chloride 10 mL and the mixture was refluxed for 3 h to give acid chloride. Powdered ammonium thiocyanate (1.14 g, 15 mmol), acid chloride (1.04 g, 10 mmol), PEG-600 (0.18 g, 3 % with respect to ammonium thiocyanate) methylene chloride (25 mL) and pyridine were placed in a dried round-bottomed flask containing a magnetic stirrer bar and stirred at room temperature for 1 h. Then substituted substituted aniline (4.5 mmol) in methylene dichloride (10 mL) was added drop wise over 0.5 h and the mixture was stirred for 15 min under microwave irradiation. The corresponding thiourea precipitated immediately. The product was filtered and recrystallized from DMF-EtOH-H₂O, afforded a light yellow solid (Scheme-I).

N-2,4,5-trichlorophenyl-N'-nicotinoyl thiourea (3a): The compound was obtained in 67.1 % yield as a yellow crystal; m.p. 199-200 °C; ¹H NMR (CDCl₃, 300 MHz), δ : 12.44 (s, NH, 1H), 11.90 (s, NH, 1H), 7.09-8.26 (m, ArH and Py, 6H). IR (KBr, v_{max} , cm⁻¹): 3321, 3104 (NH), 1670 (C=O), 1151 (C=S). MS (ESI), *m/z*: 359 (M -1). Elemental anal. (%), calculated: C, 43.29; H, 2.24; N, 11.65; found: C, 43.50; H, 2.41; N, 11.51.

*N***-2,5-dichlorophenyl**-*N***'-nicotinoyl thiourea (3b):** The compound was obtained in 67.1 % yield as a yellow crystal;

Scheme-I: Synthesis route for the title compounds

m.p. 206-207 °C; ¹H NMR (CDCl₃, 300 MHz), δ : 11.98 (s, NH, 1H), 11.78 (s, NH, 1H), 7.23-8.14 (m, ArH and Py, 7H). IR (KBr, ν_{max} , cm⁻¹): 3301, 3112 (NH), 1668 (C=O), 1157 (C=S). MS (ESI), *m/z* : 325 (M-1). Elemental anal. (%), calculated: C, 47.87; H, 2.78; N, 12.88; found: C, 47.99; H, 2.44; N, 12.85.

N-3-methylphenyl-*N***'-nicotinoyl thiourea (3c):** The compound was obtained in 67.1 % yield as a yellow crystal; m.p. 106-107 °C; ¹H NMR (CDCl₃, 300 MHz), δ : 11.98 (s, NH, 1H), 11.81 (s, NH, 1H), 7.12-8.66 (m, ArH and Py, 8H), 2.55 (s, CH₃, 3H). IR (KBr, v_{max}, cm⁻¹): 3221, 3089 (NH), 1672 (C=O), 1151 (C=S). MS (ESI), *m/z*: 270 (M-1). Elemental anal. (%), calculated: C, 61.97; H, 4.83; N, 15.49; found: C, 61.89; H, 4.65; N, 15.45.

N-3-chlorophenyl-*N***'-nicotinoyl thiourea (3d):** The compound was obtained in 67.1 % yield as a yellow crystal; m.p. 153-154 °C; ¹H NMR (CDCl₃, 300 MHz), δ : 12.32 (s, NH, 1H), 11.78 (s, NH, 1H), 7.33-8.34 (m, ArH and Py, 8H). IR (KBr, v_{max} , cm⁻¹): 3345, 3132 (NH), 1665 (C=O), 1147 (C=S). MS (ESI), *m*/*z*: 291 (M -1). Elemental anal. (%), calculated: C, 53.52; H, 3.45; N, 14.40; found: C, 53.88; H, 3.47; N, 14.56.

N-2-chlorophenyl-*N*'-nicotinoyl thiourea (3e): The compound was obtained in 67.1 % yield as a yellow crystal; m.p. 210-211 °C; ¹H NMR (CDCl₃, 300 MHz), δ: 12.12 (s, NH, 1H), 11.98 (s, NH, 1H), 7.21-8.25 (m, ArH and Py, 8H). IR (KBr, v_{max} , cm⁻¹): 3341, 3189 (NH), 1669 (C=O), 1158 (C=S). MS (ESI), *m/z*: 291 (M-1). Elemental anal. (%), calculated: C, 53.52; H, 3.45; N, 14.40; found: C, 53.77; H, 3.33; N, 14.51.

N-3-trifluoromethylphenyl-*N*'-nicotinoyl thiourea (3f) : The compound was obtained in 67.1% yield as a yellow crystal; m.p. > 250 °C; ¹H NMR (CDCl₃, 300 MHz), δ : 11.95 (s, NH, 1H), 11.67 (s, NH, 1H), 7.14-8.33 (m, ArH and Py, 8H). IR (KBr, v_{max} , cm⁻¹): 3245, 3111 (NH), 1665 (C=O), 1144 (C=S). MS (ESI), *m/z* : 324 (M-1). Elemental anal. (%), calculated: C, 51.69; H, 3.10; N, 12.92; found: C, 51.80; H, 3.48; N, 12.64.

N-2-iodophenyl-N'-nicotinoyl thiourea (3g): The compound was obtained in 67.1 % yield as a yellow crystal; m.p. 238-240 °C; ¹H NMR (CDCl₃, 300 MHz), δ : 12.11 (s, NH, 1H), 11.99 (s, NH, 1H), 7.05-8.23 (m, ArH and Py, 8H). IR (KBr, ν_{max} , cm⁻¹): 3334, 3144 (NH), 1668 (C=O), 1161 (C=S). MS (ESI), *m/z*: 382 (M-1). Elemental anal. (%), calculated: C, 40.75; H, 2.63; N, 10.97; found: C, 40.45; H, 2.41; N, 10.57.

N-4-trifluoromethylphenyl-*N*'-nicotinoyl thiourea (**3h**): The compound was obtained in 67.1 % yield as a yellow crystal; m.p. 121-123 °C; ¹H NMR (CDCl₃, 300 MHz), δ : 12.05 (s, NH, 1H), 11.99 (s, NH, 1H), 7.16-8.39 (m, ArH and Py, 8H). IR (KBr, ν_{max} , cm⁻¹): 3318, 3096 (NH), 1650 (C=O), 1145

(C=S). MS (ESI), *m/z*: 324 (M-1). Elemental anal. (%), calculated: C, 51.69; H, 3.10; N, 12.92; found: C, 51.45; H, 3.09; N, 13.05.

N-4-chlorophenyl-*N*'-nicotinoyl thiourea (3i): The compound was obtained in 67.1 % yield as a yellow crystal; m.p. 232-234 °C; ¹H NMR (CDCl₃, 300 MHz), δ : 12.12 (s, NH, 1H), 11.88(s, NH, 1H), 7.22-8.25 (m, ArH and Py, 8H). IR (KBr, v_{max} , cm⁻¹): 3352, 3156 (NH), 1669 (C=O), 1154 (C=S). MS (ESI), *m/z*: 291 (M-1). Elemental anal. (%), calculated: C, 53.52; H, 3.45; N, 14.40; found: C, 53.48; H, 3.65; N, 14.12.

N-2-trifluoromethylphenyl-*N*'-nicotinoyl thiourea (3j): The compound was obtained in 67.1 % yield as a yellow crystal; m.p. 203-204 °C; ¹H NMR (CDCl₃, 300 MHz), δ : 12.15 (s, NH, 1H), 12.03 (s, NH, 1H), 7.19-8.26 (m, ArH and Py, 8H). IR (KBr, v_{max} , cm⁻¹): 3291, 3144 (NH), 1670 (C=O), 1155 (C=S). MS (ESI), *m/z*: 324 (M-1). Elemental anal. (%), calculated: C, 51.69; H, 3.10; N, 12.92; found: C, 51.45; H, 3.43; N, 13.21.

Bioassay of fungicidal activities: The method for testing the primary biological activities was performed in an isolated culture. Under a sterile condition, 1 mL of sample was added to the culture plates, followed by the addition of 9 mL of culture medium. The final mass concentration was 50 μ g/mL. The blank assay was performed with 1 mL of sterile water. Circle mycelium with a diameter of 4 mm was cut using a drill. The culture plates were cultivated at (24 ±1) °C. The extended diameters of the circle mycelium were measured after 72 h. The relative inhibition rate of the circle mycelium compared to blank assay was calculated via the following equation:

Relative inhibition rate (%) =
$$\frac{d_{ex} - d_{ex}'}{d_{ex}} \times 100\%$$

where d_{ex} is the extended diameter of the circle mycelium during the blank assay; and d'_{ex}, is the extended diameter of the circle mycelium during testing.

RESULTS AND DISCUSSION

Biological activities: Fungicidal activities of compounds **3a, 3c, 3e, 4a, 4c, 4e** against G. zeae Petch, *Phytophthora infestans* (Mont.) de Bary, *Botryosphaeria berengeriana* f. sp. piricola (Nose) *koganezawa et Sakuma, Fusarium oxysporum* f.sp. cucumerinum and *Cercospora arachidicola*. The fungicidal activities of the title compounds were determined. The results were shown in Table-1. It was also found that some of these compounds displayed moderate fungicidal activity.

TABLE-1 FUNGICIDAL ACTIVITY OF TESTED COMPOUNDS AT 50 ppm					
No	G. zeae Petch	Phytophthora infestans (Mont.) de Bary	Botryosphaeria berengeriana f. sp. piricola (Nose) koganezawa et Sakuma	Fusarium oxysporum f.sp. cucumerinum	Cercospora arachidicola
3a	10	23	57	26	0
3b	25	34	45	32	65
3c	5	40	21	45	45
3d	28	0	49	38	0
3e	51	21	8	62	15
3f	0	35	41	55	8
3g	42	34	51	24	24
3h	15	18	28	25	33
3i	48	36	27	25	34
3j	34	35	36	48	15

REFERENCES

- a) X.H. Liu, J.Q. Weng, C.X. Tan, L. Pan, B.L. Wang and Z.M. Li Asian J. Chem., 23, 4031 (2011); b) C.X. Tan, Y.X. Shi, J.Q. Weng, X.H. Liu, B.J. Li and W.G. Zhao, Lett. Drug Des. Discov., 9, 431 (2012); c) X.H. Liu, L. Pan, C.X. Tan, J.Q. Weng, B.L. Wang and Z.M. Li, Pestic. Biochem. Physiol., 101, 143 (2011); d) C.X. Tan, Y.X. Shi, J.Q. Weng, X.H. Liu, B.J. Li and W.G. Zhao, J. Heterocycl. Chem. (in press); e) X.H. Liu, C.X. Tan and J.Q. Weng, Phosphorus Sulfur Silicon Relat. Elem., 186, 558 (2011); f) X.H. Liu, L. Pan, J.Q. Weng, C.X. Tan, Y.H. Li, B.L. Wang and Z.M. Li, Mol. Divers., 16, 251 (2012); g) X.F. Liu and X.H. Liu, Acta Cryst., E67, o202 (2011); h) X.H. Liu, W.G. Zhao, B.L. Wang and Z.M. Li, Res. Chem. Intermed., 38, 1999 (2012); i) N.N. Su, Y. Li, S.J. Yu, X. Zhang, X.H. Liu and W.G. Zhao, Res. Chem. Intermed., (2012).
- a) P.Q. Chen, C.X. Tan, J.Q. Weng and X.H. Liu, Asian J. Chem., 24, 2808 (2012); b) X.H. Liu, C.X. Tan and J.Q. Weng, Phosphorus Sulfur Silicon Relat. Elem., 186, 552 (2011); c) S.V. Rao, D. Komali, S.K. Ameer, S.D.V.V.S.S. Raju and K.N. Reddy, Asian J. Chem., 24, 3203 (2012); d). M.E.B. Rao and V.G. Rajurkar, Asian J. Chem., 23, 2648

(2011); e) E.S. Darwish, F.F. Mahmoud and F.M.A. Altalbawy, *Asian J. Chem.*, **24**, 2997 (2012); f) R.J.R. Rao, A.K.S.B. Rao, K. Swapna, B.B. Rani and Y.L.N. Murthy, *Asian J. Chem.*, **24**, 1837 (2012); G.S. Sridhar, Y.R. Prasad and S.C. Dinda, *Asian J. Chem.*, **24**, 1130 (2012); h) R.C. Merugu, D. Ramesh and B. Sreenivasulu, *Asian J. Chem.*, **23**, 4497 (2011).

- a) Y.L. Xue, Y.G. Zhang and X.H. Liu, *Asian J. Chem.*, 24, 1571 (2012);
 b) Y.L. Xue, Y.G. Zhang and X.H. Liu, *Asian J. Chem.*, 24, 5087 (2012);
 c) J.Q. Weng, C.X. Tan, L. Wang and X.H. Liu, *J. Chem. Soc. Pak.* 34, 1248 (2012);
 d) Y.L. Xue, Y.G. Zhang and X.H. Liu, *Asian J. Chem.*, 24, 3016 (2012);
 e) X.H. Liu, L. Pan, Y. Ma, J.Q. Weng, C.X. Tan, Y.H. Li, Y.X. Shi, B.J. Li, Z.M. Li and Y.G. Zhang, *Chem. Biol. Drug Des.*, 78, 689 (2011);
 f) H.J. Liu, J.Q. Weng, C.X. Tan and X.H. Liu, *Acta Cryst.*, E67, 01940 (2011).
- a) W.C. Oh, C.Y. Park, J.W. Jeon and C.S. Lim, *Asian J. Chem.*, 24, 3319 (2012); b) U.T. Saravanan and S. Vijayalakshmi, *Asian J. Chem.*, 24, 3524 (2012); c) M. Mathew, M.S. Chand and P. Jayasekhar, *Asian J. Chem.*, 24, 3103 (2012); d) A. Davoodnia, A. Saeidi and N. Tavakoli-Hoseini, *Asian J. Chem.*, 24, 2313 (2012); e) X.D. Yang, *J. Chem. Res.*, 9, 489 (2008).