

Influence of Temperatures and Thermodynamic Parameters on pK_a Values for Some Acids and Basic Imines Derived 3-Acetyl and 4-Acetyl Pyridines

A.S.P. Azzouz^{*} and R.D. SULAIMAN

Department of Chemistry, College of Education, University of Mosul, Mosul, Iraq

*Corresponding author: E-mail: azzouz20042001@yahoo.com

(*Received*: 14 May 2012;

Accepted: 1 April 2013)

AJC-13192

The work is concerned with the influence of temperature on the values of ionization constants for some acids and basic imines in fixed 10 % ethanol in a mixture of ethanol and water. These imines are in a forms of syn or anti oxime and phenolic or amino Schiff bases, containing phenol and amine groups in *ortho*, *meta* and *para* positions on the aromatic rings of primary amine sides. The thermodynamic of ionization for imines confirm that ionization reactions in these imines are accompanied by an increase of parameters ΔG° and ΔH° . These mean that ionization reactions in these imines are non-spontaneous and endothermic respectively. ΔS° values of ionization reactions estimated have a negative signs.

Key Words: Thermodynamic parameters, pK_a, Imines.

INTRODUCTION

A great numbers of imines whether are aliphatic, aromatic or their mixture are prepared during the last years¹⁻³. This is for their wide applications in different fields^{4.5}. It had proved in a numerous studies, that temperature had a great influence on many reactions as tautomerism of carbonyl⁶, benzoin⁷ compounds, pK_a of imines⁸ and other reactions.

The lack of the influence of temperature on pK_a values of some acids and basic imines derived from 3-acetyl pyridine and 4-acetyl pyridine, encourage the researchers to deal with such important topic. The study was conducted at fixed 10 % ethanol solvent and temperature range between (288-328) K. The thermodynamic parameters of ionization namely ΔG° , ΔH° and ΔS° were included and discussed⁹.

EXPERIMENTAL

All chemicals used throughout this work were of Fluka, BDH and Molckula origin.

All imines in a forms of oximes *syn* and Schiff bases were prepared by mixing equimolar amounts of 3-acetyl pyridine or 4-acetyl pyridine with suitable primary amine as hydroxyl amine, o, m, p-amino phenol and o, m, p-phenylene diamine, according to standard procedure^{10,11}.

The *syn* aldoximes were converted to their *anti* forms by either catalytic HCl gas method¹¹ or refluxing *syn* oxime in dry benzene, after addition of dry activated charcoal method¹¹ (Table-1).

The pK_a values for mines were determined¹² by potentiometric method, using sodium hydroxide or HCl titrant using the following equations:

$$pKa = pH + \log \frac{[HA]}{[A^-]}$$
(1)

$$pKa = pH + \log \frac{[BH^+]}{[B]}$$
(2)

The [HA], $[BH^+]$, $[A^-]$ and [B] were determined¹² using a proton balance equations.

FTIR spectrophotometer was used for measurement of IR spectra of solid imines by KBr disc method or in solution after dissolving imines in dry benzene. A computerized double beam Shimadzu 1601 for measurement of UV spectra of imines solutions in solvent ethanol and dry benzene; A memmert thermostat manufactured by Searle company model L200, for fixation the temperature of imines solution. Water is pumped out from thermostat to cell by using water pump; A digital Philips pH meter model pw 9421 was used for measuring pH of solutions during potentiometric titration.

RESULTS AND DISCUSSION

The values of ionization constant pK_a for 16 imines under study were determination at five different temperatures in the range (288-328) K. These show that pKa values or ln K_a for any imine were decreased by increasing temperature. This mean that acidity of any imine at any temperature listed in Table-2 was increased by increase of temperature. Comp

no

1

2

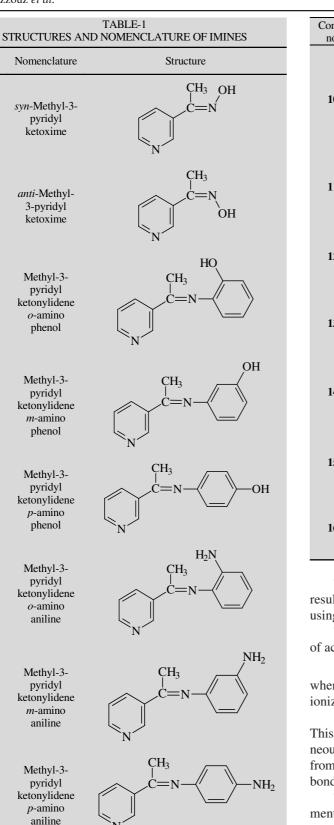
3

4

5

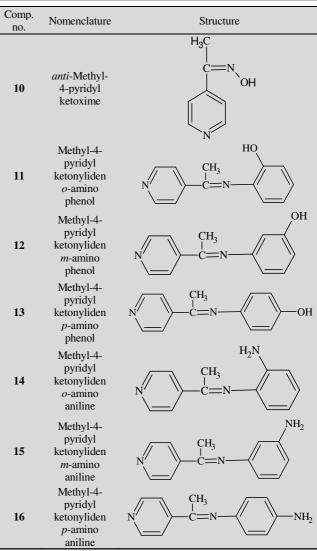
6

7


8

9

syn-Methyl-4-


pyridyl

ketoxime

CH₃

OH

This comes in agreement with earlier works^{8,13}. These results facilitate the evaluation of thermodynamic parameters using a standard^{6,7} equations.

The change in Gibbs free energy (ΔG°) upon ionization of acid was calculated from an equation of the form:

$$\Delta G^{o} = - RT \ln K_{a} \tag{1}$$

where $R = 8.314 \text{ J mol}^{-1} \text{ deg}^{-1}$, T = absolute temperature, $K_a = \text{ionization constant of acid.}$

All values of ΔG° listed in Table-2 had a positive signs. This means that ionization process of imines is non-spontaneous. The last can be accepted⁸, because ionization of ions from oxime, phenol or conjugate acid of imines have a covalent bonding properties or are difficult to ionize solutions.

The change of enthalpy (ΔH°) upon ionization of acids mentioned were calculated from the integrated Van't Hoff equation of the form:

$$\ln K_a = \text{constant} - \Delta H^{\circ}/RT$$
 (2)

 ΔH° = change in enthalpy upon ionization, R = 8.314 J mol⁻¹ deg⁻¹, T = Absolute temperature.

From equation (2) using Microsoft excel program, the plot of ln K *versus* T⁻¹, showed a straight lines for all acids with negative slopes. Their correlation coefficients had a range values between 0.874-0.9954.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\overline{\Delta H}^{o}$		
288 -21.842 24038.90 52299.18 -98.13	(J mol ⁻¹)	$\overline{\Delta G}^{\circ}$ (J mol ⁻¹)	$\frac{\overline{\Delta S}^{o}}{(J \text{ mol}^{-1} \text{ K}^{-1})}$
298 -21.781 24722.45 53963.99 -98.13			
1 308 -21.781 24975.88 55198.71 -98.13	24483.90	54706.71	-98.13
318 -21.781 24800.65 56004.72 -98.13			
<u>328</u> -20.560 23881.63 56066.96 -98.13			
288 -25.293 41675.81 60562.37 -65.58 298 -24.951 42275.55 61817.89 -65.58			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42048.44	62240.56	-65.58
2 308 -24.540 42057.11 02855.24 -05.58 318 -23.689 41776.29 62630.21 -65.58	42040.44	02240.30	-05.58
328 -23.689 41857.42 63367.11 -65.58			
288 -21.684 21147.62 51920.86 -06.85			
298 -21.404 21188.19 53029.95 -06.85			
3 308 -21.312 21663.62 54573.89 -06.85	21298.37	54208.64	-106.85
318 -21.047 21666.37 55645.15 -06.85			
328 -20.489 20826.04 55873.34 -06.85			
288 -22.908 18506.56 54851.65 -26.19		-	
298 -22.771 18809.73 56416.79 -26.19			
4 308 -22.685 19220.70 58089.75 -26.19	18773.24	57642.29	-126.19
318 -22.369 19009.29 59140.33 -26.19			
328 -21.897 18319.93 59712.94 -26.19			
288 -23.394 39120.23 56015.34 -58.66			
298 -23.063 39658.49 57140.24 -58.66			
5 308 -22.507 39565.56 57633.94 -58.66	39382.04	57450.42	-58.66
318 -21.932 39329.94 57984.96 -58.66			
328 -21.444 39235.96 58477.62 -58.66			
288 -12.288 22196.38 29422.78 -25.09			
298 -11.928 22075.17 29552.48 -25.09			
6 308 -11.533 21804.46 29532.69 -25.09	22065.72	29793.95	-25.09
318 -11.329 21973.05 29952.19 -25.09			
<u>328</u> -11.188 22279.52 30509.59 -25.09		<u>.</u>	
288 -12.569 27899.92 30095.62 -7.62 208 12.204 20187.24 20150.27 7.62			
298 -12.294 28187.34 30459.27 -7.62 208 11.0(2) 20935 (2) 20(22.70) 7.(2)	28057.60	20405 77	7.60
7 308 -11.963 28285.62 30633.79 -7.62 318 -11.468 27895.28 30319.69 -7.62	28037.00	30405.77	-7.62
318 -11.408 27893.28 30319.09 -7.02 328 -11.192 28019.84 30520.49 -7.62			
<u>288</u> -16.244 <u>33581.91</u> <u>38895.15</u> -18.45			
298 -15.702 33405.10 38902.84 -18.45			
8 308 -15.442 33860.29 39542.51 -18.45	33574.49	39256.71	-18.45
318 -14.902 33532.04 39398.95 -18.45	00071112	0,2001,1	10110
328 -14.501 33492.92 39544.11 -18.45			
288 -24.687 38701.20 59111.34 -70.87		×	
298 -24.100 38590.66 59709.49 -70.87			
9 308 -23.678 38805.03 60632.54 -70.87	38693.15	60520.66	-70.87
318 -23.202 38806.46 61342.65 -70.87			
328 -22.665 38562.39 61807.27 -70.87			
288 -24.006 37958.93 57480.73 -67.78			
298 -23.675 38456.87 58656.52 -67.78			
10 308 -23.182 38484.94 59362.43 -67.78	38223.32	59102.44	-67.78
318 -22.595 38182.51 59737.84 -67.78			
328 -22.103 38041.34 60274.70 -67.78			
288 -21.929 22885.98 52507.49 -102.85			
298 -21.312 22151.97 52802.01 -102.85			
11 308 -21.296 22854.35 54532.92 -102.85	22665.25	54344.27	-102.85
318 -21.074 23009.44 55716.54 -102.85			
<u>328</u> -20.595 22426.78 56162.40 -102.85			
288 -23.953 44043.18 57353.83 -46.22 288 -23.401 44044.84 57077.66 46.22			
298 -23.401 44204.84 57977.66 -46.22 12 208 22.012 44/04.67 58020.67 44/22	11065.05	50500 24	46.00
12 308 -23.013 44694.67 58929.67 -46.22	44265.25	58500.24	-46.22
318 -22.463 44691.67 59388.85 -46.22 228 21.581 43601.87 58851.21 46.22			
328 -21.581 43691.87 58851.21 -46.22			

Comp. no.	Temp. (K)	ln Ka	ΔH° (J mol ⁻¹)	ΔG^{o} (J mol ⁻¹)	$\frac{\Delta S^{o}}{(J \text{ mol}^{-1} \text{ K}^{-1})}$	$\overline{\Delta H}^{o}$ (J mol ⁻¹)	$\overline{\Delta G}^{o}$ (J mol ⁻¹)	$\overline{\Delta S^{o}}$ (J mol ⁻¹ K ⁻¹)
13	288	-23.206	38619.79	55565.19	-58.84	39026.19	57148.36	-58.84
	298	-22.859	39101.04	56634.82	-58.84			
	308	-22.558	39642.38	57764.54	-58.84			
	318	-22.008	39475.35	58185.89	-58.84			
	328	-21.119	38292.42	57591.34	-58.84			
14	288	-12.299	24502.22	29449.12	-17.18	24399.22	29847.90	-17.18
	298	-12.038	24706.35	29825.01	-17.18			
	308	-11.630	24490.65	29781.08	-17.18			
	318	-11.321	24468.85	29931.05	-17.18			
	328	-11.094	24619.28	30253.25	-17.18			
15	288	-12.301	22514.84	29453.91	-24.09			
	298	-12.057	22692.08	29872.09	-24.09			
	308	-11.847	22915.81	30336.76	-24.09	22774.48	30046.62	-24.09
	318	-11.335	22306.18	29968.06	-24.09			
	328	-11.222	22699.48	30602.30	-24.09			
16	288	-14.643	22514.84	35061.67	-22.33			
	298	-14.429	22692.08	35748.89	-22.33			
	308	-14.154	22915.81	36244.32	-22.33	28933.27	35811.34	-22.33
	318	-13.632	22306.18	36040.99	-22.33			
	328	-13.187	22699.48	35960.84	-22.33			

The change of entropy ΔS° accompanied ionization of acids were also calculated from Gibbs equation of the form:

$$\overline{\Delta G}^{\circ} = \overline{\Delta H}^{\circ} - T \overline{\Delta S}^{\circ}$$
$$\Delta S^{\circ} = S_2^{\circ} - S_1^{\circ}$$

where S_2° = entropy for products, S_1° = entropy for reactions.

Actually the change of entropy ΔS° for any ionization reaction mean the change of system from order into random. This must accompany by an increase of entropy for the product S_2° relative to the entropy of reaction S_1° *i.e.* $S_2^{\circ} > S_1^{\circ}$. $\Delta S^{\circ} = S_2^{\circ} - S_1^{\circ}$ must be positive value.

It was shown in Table-2 that all ΔS° value had a negative signs. This was in contrary to our expectation. This can be interpreted by main two reasons:

(1) The interaction of solvent with products of ionization reaction. This was accompanied by an increase of order of ions products. In this case, a possible interaction can happen between anion of acids A⁻ with polar 10 % ethanolic solvent which contains 90 % water. The last resulted to a decrease of random of ion system product and finally resulted to a negative values of $\overline{\Delta S^{\circ}}$ thermodynamic parameter.

(2) The existence of intermolecular hydrogen bonding in oximes numbered 2, 4, 7, 9, 10, 15 as confirmed in this study from measurements of IR spectra resulted to a negative values of $\overline{\Delta S}^{\circ}$.

Finally all thermodynamic study were in full agreement with other earlier similar studies^{8,12,13} in the same field.

Conclusion

The thermodynamic parameters for ionization reactions of acids in this study, were calculated at 10 % ethanol solvent from standard equations. These give a positive signs of $\overline{\Delta G^o}$ and $\overline{\Delta H^o}$ thermodynamic parameters. These mean that ionization process in acids were non spontaneous and endothermic respectively. A suitable interpretation for non spontaneous process was given due to the covalent bonding property of the weak ionized oxime and phenol groups. The negative sign of ΔS^o thermodynamic parameter was due to two folds reasons as: (1) The interactions between 10 % ethanol solvent with anions of acids. (2) The presence of intermolecular hydrogen in most acids.

REFERENCES

- S. Patai, The Chemistry of Carbon Nitrogen Double Bond, Wiley, New York (1970).
- A.S.P. Azzouz and S.S. Othman and A.N.A.-Dabagh, *Nat. J. Chem.*, 36, 782 (2009).
- 3. A.S.P. Azzouz and B.O. Kashmola, Nat. J. Chem., 41, 1 (2011).
- 4. S. Fischmann and U. Lüning, Israel J. Chem., 53, 87 (2013).
- B. Dash, M. Patra and P.K. Mahapatra, J. Indian Chem. Soc., 61, 1061 (1983).
- J.E. Dubois, M. El-Alaoui and J. Toullec, J. Am. Chem. Soc., 1981, 103, 5393 (1981).
- A.S.P. Azzouz, M.A. Hasen and M. Ghanm, *Nat. J. Chem.*, 38, 361 (2010).
- 8. A.S.P. Azzouz and H.J. Al-Al-Mula, Al-Anbar J. Pure Sci., 4, 59 (2010).
- 9. A.R. Butler, Problems in Physical Organic Chemistry, John Wiley, London (1972).
- A.I. Vogel, Text Book of Practical Organic Chemistry, Longman, London, edn. 4 (1978).
- 11. J.R. Majer and A.S.P. Azzouz, *J. Chem. Soc., Faraday Trans.*, **79**, 675 (1983).
- A. Albert and E.P. Serjeant, The Determination of Ionization Constant, edn. 3, Chapman & Hall, London, pp. 128-207 (1984).
- 13. A.S.P. Azzouz and M.A.A-Zybadi, J. Educ. Sci., 24, 1 (2011).