NOTE

Synthesis of 3-Substituted Phenyl-4-Arylidene-5-[(2'-O-Carbamyl) 5'/6'-Methyl Phenyl] Pyrazoles

M. B. HOGALE* and B. N. PAWAR

Department of Chemistry, Shivaji University Kolhapur-416 004, India

The synthesis of some new 3-substituted phenyl-4-arylidine-5-[(2'-o-carbamyl) 5'/6'-methyl phenyl] pyrazoles have been reported. The strategy employed for the synthesis involved the reaction of 2'-hydroxy, 5'/6'-methyl-2-benzoyl-3-aryl-acrylophenones with hydrazine hydrate to give targeted pyrazoles II_{a-m} . The structures of these compounds have been confirmed by elemental analysis and ir, nmr spectral studies.

Pyrazoles form a very important class of heterocyclic compounds which do not occur in nature. Many pyrazole derivatives are known to possess wide ranging activities¹⁻⁴. They also act as good antiviral agents⁵⁻⁷, analgesics⁸, depressants⁹, antiinflammatory¹⁰⁻¹³ and antidiabetic¹⁴ agents. Recently, some 3-phenyl-4-arylidine-5-o-hydroxyphenyl-pyrazoles have been reported¹⁵. Here, we report the synthesis of some new pyrazoles derived from substituted acrylophenones.

The preparation of substituted o-hydroxy dibenzoyl methanes II_{a-m} were carried out by Baker Venkatraman¹⁶ transformation of o-aryloxy-acetophenones under catalysed conditions followed by base catalysed condensation with various aromatic aldehydes to form acrylophenones II_{a-m}. The compounds II_{a-m} when reacted with phenyl isocyanate in THF in the presence of triethylamine yielded corresponding urethanes III_{a-m} in a quantitative yield. Urethanes of 2'-hydroxy-5'/6'-methyl-2-benzoyl-3-phenyl acrylophenones when condensed with hydrazine hydrate in acetic acid gave title compounds IV_{a-m} respectively (Scheme 1).

All the melting points were determined by open capillary method and are not corrected. IR-spectra were recorded in KBr pellets on Perkin-Elmer spectrophotometer. PMR-spectra (TFA) were run on Perkin Elmer 90 MHZ spectrometer using TMS as internal standard. The purity of the compounds in addition to elemental analysis was checked by TLC.

The o-hydroxy-5-methyl dibenzoyl methanes $I_{a-m'}$ 2'-hydroxy, 5'/6'-methyl-2-benzoyl-3-aryl acrylophenones¹⁷ II_{a-m} and substituted 2'-o-carbamyl, 5'/6'-methyl-2-benzoyl-3-aryl acrylophenones¹⁸ III_{a-m} were prepared by known method.

The following procedure forms a general method for the preparation of corresponding pyrazoles IV_{a-m}.

TABLE 1

PHYS	PHYSICAL DATA	FA OF 3-S	UBSTITU	TED PHE	NYL-4-AR)	YLIDENE	OF 3-SUBSTITUTED PHENYL-4-ARYLIDENE-5-(2'-0-CARBAMYL, 5'/6'-METHYL PHENYL) PYRAZOLES	YL, <i>5'/6'</i> -METHY.	L PHEN	YL) PYRAZOLES
Compd.	x	R _i	R ₂	R3	Yı	Y2	Y3	Molecular formula	M.P.	Analysis of N % Found/(Calculated)
IV ₆	н	—CH3	н	-NO2	Н	Н	-OCONHPh	C37H26N4O10	130	8.00 (8.16)
IVe	H	Н	-CH3	-NO2	-ОСН3	н	ОСН3	C32H26N4O6	215	10.50 (10.56)
IVa	-NO2	-CH3	н	-NO2	-0CH3	Н	-0CH3	C31H25N9O8	194	11.75 (11.89)
IV.	H	—СН 3	Н	Н	н	н	- OCONHPh	C37H27N4O4	175	9.40 (9.49)
IV,	-NO2	-CH3	Н	-NO2	Н	Ħ	-N(CH ₃) ₂	C ₀₂ H ₂₆ N ₆ O ₆	225	14.20 (14.22)
IV	-NO2	-CH3	н	Ö	H	H	-N(CH ₃) ₂	C32H26N5O4CI	188	12.00 (12.08)
IV_h	-NO2	н	H	-NO2	н	Н	—0СН3	C30H21N5O7	140	12.35 (12.44)
IV1	-NO2	-CH3	Ħ	-NO2	н	Н	-NO ₂	C30H20N6O8	155	14.10 (14.19)
IV	Н	CH3	н	-NO2	Ħ	-CI	Н	C30H21N4O4CI	180	10.40 (10.43)
IV	Н	-CH3	Н	-NO2	н	H	-N(CH ₃) ₂	C32H27N5O4	110	12.80 (12.84)
IVi	н	Ħ	-CH3	-N02	H	H	-OCONHPh	C37H27N5O6	185	10.75 (10.81)
IV	н	н	-CH3	-NO ₂	н	Ħ	-N(CH ₃) ₂	C32H27N5O5	202	12.50 (12.61)
										,

3-substituted phenyl-4-arylidine-5-(2'-o-carbamyl, 5'/6'-methyl phenyl) pyrazoles (IV_a): A mixture of 2'-hydroxy, 5'/6'-methyl-2-benzoyl-3-arylacrylophenones (0.552 g, 0.001 mole) and hydrazine hydrate (3.5 ml, 20%) in 5 ml. of glacial acetic acid was refluxed for about $1\frac{1}{2}$ hr., cooled and poured into ice cold water. The separated solid was filtered and recrystallized from ethanol to furnish IV_a (0.4 g., 71.5 %). M.P. 155°C (found: C, 69.80; H, 5.15; N, 8.35. $C_{32}H_{26}O_4N_3Cl$ calcd. for: C, 69.88, H, 5.2; N, 8.4 %). IR (KBr): v_{max} (cm⁻¹) 3300-3250 (—NH); 1720 (—O—CO), 1620 (—C=N), 1600 (—C=C); 1150 (C—O—C); NMR (FFA): δ (PPM), 2.3 (3H, s, Ar—CH₃), 3.83 (3H, s, —OCH₃); 7 – 7.5 (10 H, M., aromatic protons), 8.4 (1H, s, CONH exchangeable with D₂O).

REFERENCES

- 1. E. Herrman and J. Gabliks, Cancer Chemother. Rep., 14, 85 (1961).
- 2. S. Rich and J. G. Horstall, *Phytopathology*, 42, 457 (1952).
- T. Kosuge, H. Okeda, Y. Teraishit Ito and S. Kosara, J. Pharm. Soc. (Japan), 74, 819 (1954).

- 4. E. J. Owen, E. E. Swanson, Jr. and D. B. Meyers, J. Amer Pharm. Assoc., 70, 47 (1958).
- G. D. Diana and P. M. Carabateas, Ger. Often, 2, 834, 322; Chem. Abstr., 90, 168589f (1979).
- G. D. Diana, P. M. Carabateas, G. L. Williams, I. Panicic and B. A. Steinberg, J. Mednl. Chem., 24, 431 (1981).
- 7. R. S. Sharma, R. B. Pathak and S. C. Bahel, J. Indian Chem. Soc., 62, 625 (1985).
- 8. J. I. Williams and J. B. Victor, J. Mednl. Chem., 15, 980 (1972).
- 9. R. Gakhniyan, Y. Karadzhov, K. Dordanova and D. Danchev, Tasp. Med. Vest., 22, 1 (1977).
- S. Sugiura, K. Koto, S. Ohno and T. Wakayana, J. Pharm. Soc. (Japan), 97, 719 (1977).
- 11. S. Gelin, B. Chante Grel and C. Deshayes, J. Heterocycl. Chem., 19, 789 (1982).
- S. P. Singh, O. Prakash, R. K. Tomer and S. N. Sawhney, *Indian J. Chem.*, 16B, 733 (1978).
- R. K. Vaid, G. S. Dhendsa, B. Kaushek, S. P. Singh and S. N. Dhavan, *Indian J. Chem.*, 25B, 569 (1986).
- 14. T. Irikura, Jap. Pat., 7570, 367 (1975), Chem. Abstr., 84, 5944 (1976).
- 15. V. N. Ingale, J. Indian Chem. Soc., 62, 823 (1986).
- 16. W. Baker, J. Chem. Soc., 138 (1933).
- 17. K. A. Thakar and V. N. Ingale, Indian J. Chem., 15B, 952 (1977).
- 18. M. B. Hogale, N. P. Dhore, A. R. Shelar and P. K. Pawar, *Oriental J. Chem.*, 2, 55 (1986).

[Received: 15 May, 1988; Accepted: 15 September, 1988]