Photo-copolymerization Kinetics of Acrylonitrile with Styrene in the Presence of Imidazolium-p-Chlorophenacylide

S. K. NIGAM, D. NARAYAN† and A. K. SRIVASTAVA*

Department of Chemistry Harcourt Butler Technological Institute Kanpur 208 002. India

The copolymerization of acrylonitrile (AN) with styrene (Sty) initiated by $\alpha\alpha'$ -azobisisobutyronitrile (AIBN) in the presence of imidazolium-p-chlorophenacylide (ICPY) as a photoretarder at 30°C has been investigated. The rate of polymerization (R_p) is a direct function of [AN] and [AIBN] but is an inverse function of [ICPY] and [Styrene]. The initiator exponent value is 0.63 instead of 0.5. The monomer(s) exponent value is unity. The ylide (ICPY) is not incorporated in the copolymer, which has been evidenced by NMR-spectroscopy. Kinetic data and UV studies indicate that the ICPY does not affect the rate of termination (R_t) as well as rate of propagation (R'_p) .

INTRODUCTION

The ylides are 1:2 dipolar compounds, which have received much attention and a lot of interest in synthetic organic chemistry. The applications of ylide in the field of polymer chemistry has recent origin due to pioneering work of Kondo¹⁻³, who reported the synthesis as well as polymerization of sulfonium/phosphonium ylides. We have also reported dipolar compounds as initiator/accelerator/retarder in the homo⁴⁻⁸ and copolymerization⁹⁻¹¹ of vinyl monomers. The present work is followed up, which is an extension, and reveals that it could be used as a radical retarder/inhibitor.

EXPERIMENTAL

Reagent grade monomers and solvents were purified according to the method given by Overberger¹². Imidazole (Koch-Light) and bromine (E. Merck, AR grade) were used without further purification. ICPY(I), having the following structure, was prepared by the method of Boekelheide and Fedoruk¹³.

The polymerization was carried out in glass ampoules (quartz, 8 ml capacity). The ampoule filled with the required amount of monomers, AIBN, and ICPY in dioxan, was flushed with nitrogen, and kept under visible light of 440 nm wavelength using a high-pressure mercury vapour lamp. The copolymer content, precipitated with acidified methanol and dried to a constant weight, was then refluxed with acetonitrile in order to remove homopolymers. The weight of polymers was used to calculate the percentage conversion (PC) and the rate of polymerization (R_p) was calculated from the slope of linear plot between percentage conversion and time (Fig. 1).

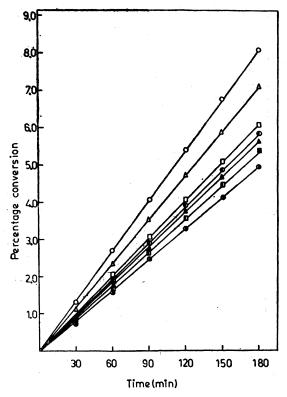


Fig. 1. Graph between polymerization time and percentage conversion. [ICPY] \times 10³; ① 0.57; ② 1.42; \triangle 2.83; ① 4.25; \square 5.67: \triangle 7:09; \bigcirc 8.50, [AIBN] = 3.81 \times 10⁻³ mol 1⁻¹, Polymerization temperature = 30°C, Time = 180 min

The intrinsic viscosity (η_{int}) of the copolymers was measured in butanone at 30°C using an Ubbelohde viscometer. Results were expressed in decilitre per gram.

The NMR and UV-spectra were recorded with a Perkin Elmer Spectrometer at room temperature using CDCl₃ as solvent and tetramethyl silane (TMS) as an internal reference.

RESULTS AND DISCUSSION

The effect of [ICPY] on R_p has been studied by varying the concentration from 1.42×10^{-3} to 8.50×10^{-3} mol 1^{-1} keeping [AIBN] (0.38 mol 1^{-1}) constant and results are shown in Table 1 and Fig. 2. The R_p increases with increasing [ICPY]. The order of reaction with respect to [ICPY], calculated from the slope of plot of log R_p against log [ICPY], is -0.17.

$$R_{\rm p} \propto \frac{1}{[{\rm ICPY}]^{0.17}} \tag{1}$$

TABLE 1

EFFECT OF IMIDAZOLIUM-p-CHLOROPHENACYLIDE ON RADICAL COPOLYMERIZATION OF ACRYLONITRILE WITH STYRENE IN THE PRESENCE OF AIBN

 $[AN] = 1.77 \text{ mol } l^{-1}$; $[Sty] = 1.63 \text{ mol } l^{-1}$; $[AIBN] = 0.38 \text{ mol } l^{-1}$; Polymerization time 180 min.

[ICPY]×10 ³ (mol l ⁻¹)	Wt. of copolymer (gms)	Conversion %	(η_{int})	$R_p \times 10^4$ (mol $l^{-1} sec^{-1}$)
0.00	1.26	15.75	0.65	0.17
0.57	0.85	8.13 7		7.41
1.42	0.57	7.13		6.58
2.83	0.49	6.13		5.73
4.25	0.47	5.88	0.37	5.45
5.67	0.45	5.63		5.17
7.09	0.43	5.38		4.93
8.50	0.40	5.00 _	4	4.68

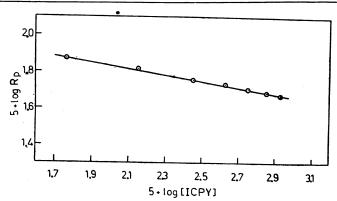


Fig. 2. Graph between log reciprocal rate of polymerization and log concentration of ICPY in the presence of AIBN, [AIBN] = 3.81 × 10⁻³ mol l⁻¹. [AN] = 1.77 mol l⁻¹, [Sty] = 1.63 mol l⁻¹. Polymerisation temperature = 30°C, Time = 180 min.

The effect of [AIBN] on the R_p has been studied by varying the concentration from 0.15 to 0.46 mol l^{-1} keeping [ICPY] (0.57 × 10⁻³ mol l^{-1}) constant. The exponent value, calculated from the slope (Fig. 3) of linear plot of log R_p and log [AIBN], is 0.63.

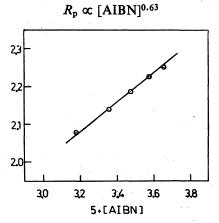


Fig. 3. Graph between log rate of polymerization and log concentration of AIBN in the presence of ICPY. [AN] = 1.77 mol l⁻¹, [Sty] = 1.63 mol l⁻¹, [ICPY] = 0.57 × 10⁻³ mol l⁻¹. Polymerization temperature = 30°C. Time = 180 min.

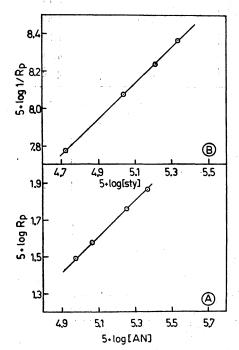


Fig. 4. (A) Graph between log rate of polymerization and log concentration of AN. [ICPY] = 2.57×10^{-3} mol l⁻¹, [AIBN] = 3.81×10^{-3} mol l⁻¹, [Sty] = 1.63 mol l⁻¹. Polymerization temperature = 30° C. Time = 180 min. (B) Graph between log reciprocal rate of polymerization and log concentration of styrene. [ICPY] = 0.54×10^{-3} mol l⁻¹. [AIBN] = 3.81×10^{-3} mol l⁻¹, [AN] = 1.77 mol l⁻¹. Polymerization temperature = 30° C. Time = 180 min.

(2)

The effect of AN on the R_p has been studied by varying [AN] from 0.56 to 2.25 mol l⁻¹, whereas [Sty], [AIBN] and [ICPY] are kept constant. It is noticed that the R_p is directly proportional to [AN]. A plot between log R_p and log [AN] gives a straight line (Fig. 4A), the slope of which gives the following relationship:

$$R_{\rm p} \propto [{\rm AN}]^{1.0} \tag{3}$$

The effect of [Sty] on R_p is studied by varying its concentration from 0.54 to 2.17 mol l⁻¹, whereas the [AN] [AIBN], and [ICPY] are kept constant. It is observed that Sty has an inverse effect on R_p . A plot between log $1/R_p$ and log [Sty] gives straight line (Fig. 4B), the slope of which gives the following relationship:

$$1/R_{\rm p} \propto [{\rm Sty}]^{1.0} \tag{4}$$

The NMR spectrum of the copolymer (Fig. 5) showed phenyl protons at $2.8-3.6\tau$ and the aliphatic protons at 8.8τ . The ratio of the peak areas

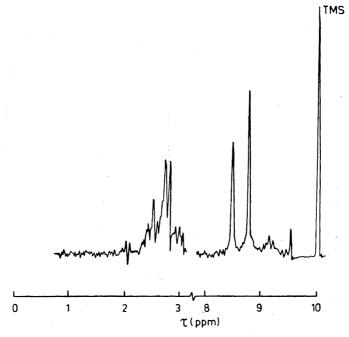


Fig. 5. N.m.r. spectrum of AN-Sty copolymer. [ICPY] = 0.57×10^{-3} mol l⁻¹. [AIBN] = 3.81×10^{-3} mol l⁻¹. [AN] = 1.77 mol l⁻¹. [Sty] = 1.63 mol l⁻¹. Polymerization temperature = 30° C. Time = 180 min.

for the phenyl and aliphatic protons is 5:6, which confirms the alternative nature of the copolymer. The absence of peak at 1.9τ (multiplet, 8H, aromatic) suggests that ICPY is not incorporated in the copolymer.

The retarding effect of ICPY may be due to any one of the following reasons:

- (i) Decrease of the rate of initiation (R_i) ,
- (ii) Decrease of the rate of propagation (R_p') ,
- (iii) Increase of the rate of termination (R_t).

The effect of ICPY on R_t has been studied by plotting a graph between $\log{(R_p/R_p^0)}$ vs. $\log{(\eta_{int}/\eta_{int}^0)}$ (whereas R_p and η_{int} are the rate of polymerization and intrinsic viscosity of the polymer, respectively, in the presence of ICPY: R_p^0 and η_{int}^0 , the corresponding values in the absence of ICPY). The linearity of graph confirms that R_t is unaffected. Intrinsic viscosity is independent, which further suggests that R_t is unaffected.

The effect of ICPY on the R_p' has been examined by studying the possibility of formation of complex between ICPY and monomer using UV spectra at 320 nm. A comparison of UV spectra (Fig. 6A and B), suggests that the tendency of complex formation is nil; hence it may be assumed that R_p' is unaffected.

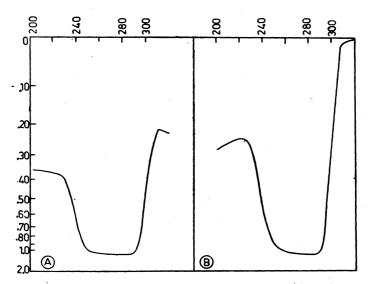


Fig. 6. UV spectrum of AN-Sty copolymer. [ICPY]= 10.57×10^{-3} mol l⁻¹. [AIBN] = 3.81×10^{-3} mol l⁻¹. [AN] = 1.77 mol l⁻¹. [Sty] = 1.63 mol l⁻¹. Polymerization temperature = 30° C. Time = 180 min.

Hence, it may be concluded that the ylide decreases the rate of initiation (R_i) whence retardation is noted.

ACKNOWLEDGEMENT

Authors are thankful to Prof. A. K. Vasishtha, Director, H.B.T.I., Kanpur for providing necessary facilities.

REFERENCES

- S. Kondo, M. Muramal Su, M. Senga and K. Tsuda, J. Polym. Sci., Polym. Chem. Edi., 22, 1187 (1984).
- S. Kondo, Y. Kondo and K. Tsuda, J. Polym. Sci., Polym. Chem. Edi., 21, 223
 (1983).
- 3. S. Kondo and K. Tsuda, J. Polym. Sci., Polym. Chem. Edi., 15, 2297 (1977).
- 4. A. K. Srivastava and S. Saini, J. Macromol. Sci. Chem., A 22-1, 43 (1986).
- 5. A. K. Shukla, S. Saini, P. Kumar, J. S. P. Rai and A. K. Srivastava, J. Polym. Sci., Polym. Chem. Ed. (in press).
- A. K. Shukla, S. Saini, P. Kumar and A. K. Srivastava, Indian J. Chem., 26A, 326 (1987).
- 7. S. Saini, A. K. Shukla and A. K. Srivastava, Polymer J., 17, 1117 (1985).
- 8. A. K. Shukla, S. Saini, P. Kumar, S. K. Nigam and A. K. Srivastava, *Die Angew*, *Makromol. Chemie*, 141, 103 (1986).
- 9. S. K. Nigam and A. K. Srivastava, Acta Polymerica, 38, 244 (1987).
- 10. S. K. Nigam, S. Saini and A. K. Srivastava, Indian J. Chem., 25A, 944 (1986).
- 11. _____, Indian J. Technol., 24, 743 (1986).
- 12. C. G. Overberger and N. J. Yamamota, J. Polym. Sci., A-1, 3101 (1966),
- 13. V. Boekeheide and N. A. Fedoruk, J. Amer. Chem. Soc., 90, 3830 (1968).

[Received: 15 March 1988; Accepted: 10 October 1988]