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Vibrational Analysis of Formic Acid
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Force constants of HCOOH and DCOOD involving seventh and
second order vibrational problems have been calculated by the method
of kinetic constants in conjunction with a new technique of solving the
secular equation. The non-linear equations are solved by the Newton-
Raphson iterative method, where the values of functions and derivatives
are obtained using the new technique exploiting the symmetry in the
secular equation. The other molecular constants like mean square
amplitudes vibration and Coriolis coupling constants are also calculated.

INTRODUCTION

The molecules HCOOH and DCOOD belong to the C; point group
with the frequency distribution 74’ (in-plane) and 24" (out-of-plane)
vibrations. The 4" vibration mode is an out-of-plane bending vibrational
one. All the vibrations are active both in infrared and Raman spectra.
The molecular parameters and frequencies of HCOOH obtained from
microwave and infrared spectra by Millikan and Pitzer! are used in the
computation of the potential constants.

THE METHOD OF KINETIC CONSTANTS

The kinetic constant method? gives a relation between the potential

constants, F;; and kinetic constants, k;; as

F,'j . k(j PR

F, "k <))
This relation enables one to express the n(n — 1)/2 off-diagonal force
constants in terms of the n diagonal force constants. Thus the problem of
indeterminancy is overcome. Then it remains to solve for the diagonal
force constants using the secular equation which yields » non-linear
equations in » unknowns. In solving the non-linear equations, Newton-
Raphson’s iterative procedure is used and here a new technique is
adopted in the determination of the values of functions and derivatives
for a set of unknown values.

Newton-Raphson Iterative Method

Newton-Raphson method consists in assuming an initial set of values
for unknowns, substituting them in the non-linear equations and checking
how far they satisfy them. The increments for each unknown is then
calculated using expressions, involving the determinants consisting of
values of functions of equations and their derivatives with respect to the



S. SAMPATH KRISHNAN, R. D. RAJAN AND S. GNANASEKARAN 303

unknowns. These increments are then added to the corresponding
unknowns and new set of values for unknowns are obtained and the
process of putting them back into the equations is continued followed by
the calculation of further increments until the required accuracy is
obtained.

So the iterative method involves mainly the calculation of the values
of the functions and their derivatives at the corresponding points. Here
a new general procedure is developed to obtain these values of functions
and derivatives in a unique way using the symmetry in the secular
equation. This is explained below.

Second Order Problem

In a second order problem, the secular equation leads to the following
two equations, one of first degree and other of second degree in Fj;

fi=Hy+Hp— A +2)=0

fi= Hy  Hip
= |Hy Hx

Here H = GF and |GF — AE| = 0 becomes |[H — AE| = 0. The elements
of H are given by

Hij =GuF; + GuFy; (i=1,2;j=1,2)
Using these expressions for H;; the derivatives are obtained as

—(A:2) =0

Oh o _

oF:, = Gy; and WZZ = G2
9 _|Gu Hp 9 _ [H2 Gn
0Fyy |Gy Hnx OFy;, |Hy Gxn

The General n xn Problem

When this is extended to a 3x3, 4x4 and other higher order pro-
blems, a certain symmetry is observed in the functions and their deriva-
tives which can be utilized to calculate them. The function f; consists of
the difference between the sum of all the principal minors of order i of
the matrix H and a similar sum for a diagonal matrix 4 having A; on
their diagonals. The sum of all the principal minors of various orders
can be directly obtained from the characteristic equation of the corres-
ponding matrices.

The derivatives of f; with respect to Fy; are determined as the sum of
all principal minors of order i involving Hy; only, where H' is the matrix
obtained by replacing the kth column of H by the kth column of G matrix.
To obtain them, the sum of the principal minors of order i in H matrix
is determined and from this the sum of the principal minors of order i in

Vol. 2, No. 3 (1990)



304 VIBRATIONAL ANALYSIS OF FORMIC ACID

a truncated H-matrix (leaving out the kth row and kth column) is
subtracted.

The advantage of this general procedure is that it can be applied
directly to a general nth order problem and there is no limitation in its
extension to a general nXn case.

Other Molecular Constants

Utilising Cyvin’s? equation 2 = LAL, the symmetrized mean square
amplitude quantities for bonded atom-pairs are calculated at 298 K.
From these values, the valence mean square amplitudes of vibration and
hence the mean amplitudes of vibration are determined.

The Coriolis matrix elements (c*) are obtained by the vector method
of Meal and Polo*. The {* elements are evaluated from the ¢* matrix
using the relation

{* = L-1c*[-1
where L is the transformation matrix between normal and symmetry
co-ordinates.
The Coriolis sum rules for both 4’ X A" and 4’ X 4” types of coupling
for the present type of molecules are given below.
z 7(@2‘)2=1 j=8:9;“=x9y

i=1to

2 (pP=3 (<))
i=1to7
j=1to7

RESULT AND DISCUSSION

The general quadratic valence force field has been used in the present
study of force constants for HCOOH and DCOOD. The force constants
and compliance constants determined here are listed in Table 1 and 2.
The C-H stretching force constant (F33 = 4.76 mdyn/A) agrees well with
the corresponding value obtained earlier by Gnanasekaran et al.’ (4.88
mdyn/A) for CH;HgCCH. The O-H’, C-O and C=O stretching force
constants assume higher values when compared to that of C-H stretch.
The force constant for COH, H'CO, O'CO bends (0.050 mdyn/A, 0.95
mdyn/A and 0.85 mdyn/A) are very much lesser compared to those of
stretching force constants. The out-of-plane bending force constants f,
and f; are very low in both the cases. This is perhaps due to the lower
steric hindrance for out-of-plane bending motions which would lower
the force constant values.

The compliance constants are the inverse of the force constants as
introduced® by Jones (N = F-! and n = f-!). A primary (or diagonal)
compliance constant is a measure of the displacement in a coordinate as
a result of a force imposed on this coordinate if all other coordinates are
allowed to adjust themselves to minimise the energy. The off-diagonal
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TABLE 1
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PRINCIPAL FORCE CONSTANTS (in mdyne/ii) AND COMPLIANCE

CONSTANTS (in mdyne-' A)

Mode Fi; HCOOH DCOOD Ni; HCOOH DCOOD

A’ Species

O-H' stretch Fu 7.12 7.29 N 0.14 0.14

C-O stretch F22 7.65 7.09 N2 0.18 0.18

C-H stretch Fss 4.76 5.02 Nss 0.21 0.20

C=0’ stretch Fu 14.22 13.79 Nus 0.08 0.08

COH bend Fss 0.50 0.66 Nss 1.81 1.70

H’CO bend Fes 0.95 0.85 Nss 1.07 1.21

O’CO bend F 0.85 0.85 N7 1.35 1.25
A” Species

out of plane bend, y Fas 0.30 0.30 Nass 3.45 3.48

torsion, 8 Fo 0.14 0.14 Nos 7.53 7.63
TABLE 2

INTERACTION FORCE CONSTANTS (in mdyne/A) AND COMPLIANCE
CONSTANTS (in mdyne~! A)

Fy;

Fi2
Fis
Fi4
Fis
Fis
Fuy
Fas
Fa
Fas
Fis
Fa
Fs4
Fis

0.02
0.05
0.12
0.01
0.06
—0.03
0.05
3.27
0.47
0.23
0.76
0.25
0.01
—0.16
-0.07
0.10
0.02
0.66
—0.01
0.10
—0.01

—0.03

HCOOH

DCOOD Ny
A’ Species
0.07 Ni.
0.09 Nis
0.20 Nia
0.04 Nis
0.09 Nie
—0.04 N7
0.07 Nas
2.59 Ny
0.91 Nas
0.31 Nazs
0.60 N2,
0.48 N
0.01 Nis
—0.16 Nie
—0.09 Ny
0.20 Nas
0.01 Nus
0.48 N
—0.01 Niss
0.14 Ns7
—0.02 Ner
A” Species
—0.04 Nss

HCOOH DCOOD
—0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.01 —0.01
—0.01 0.01
0.00 0.00
—0.04 —0.03
—0.04 —0.04
—0.03 —0.06
—0.13 —0.13
0.00 —0.01
0.00 0.01
0.04 0.04
0.02 0.03
0.02 0.00
0.00 0.01
—0.03 —0.02
0.06 0.01
—0.19 —0.22
0.04 0.09
0.65 0.91
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TABLE 3
MEAN AMPLITUDES OF VIBRATION AT 298 K (:\)

1(X-Y) HCCOH DCOOD Ref (1) Ref (1)*
1(0-H") 0.071 0.071 0.071 0.068
1(C-0) 0.046 0.045 0.047 0.042
1(C-H) 0.079 0.067 0.079 0.077
1(C-0") 0.037 0.037 0.039 0.032

*Experimental values

TABLE 4
CORIOLIS COUPLING CONSTANTS

5y HCOOH DCOOD }y HCOOH DCOOD {; HCOOH DCOOD

Lo 0074 0159  Ls  0.021 003  Zi. 0020 0.349
[w 0063 —0.104 fn 039 —0375 fs —0006  —0.018
In 0846 0845 L 0299 0253 L —0083  —0.063
Le 0402 0355 L —0441 —0473  Ls 0920 0.887
Ls —0004 —0042 s —0226 0260 L —0.126 0.069
Lo 0260 0258 fs —0.644 —0.623 Ly 0.169 0.227
Zm 0213 0237 (s 0305 0339  fi  —0.090 0.153
L» 088 0853 Ls 0255 0237  lu —0.469 0.458
f» 0002 —0.196 L» 0448 0117 &s 0128  —0.211
f» —0213 —0299 &, —~0.088 —0.138 s —0.073 0.044
L 0239 0243 L —0.152 —0.110 L» —0.424 0.500
s —0293 —0208 s 0792 0814 L —0274  —0.262
Lo —0058 —0.137 L 0173 0433 s —0229 0.034
s 0152 0155 L 0218 0222 % —0903  —0915
L 0.184 0.248
Lis —0.167 0.114
Ls 0150 0.202
Lo . 0631 0.620
s —0012  —0.068
{3 0210  —0.046
L1 —0.345  —0.295
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compliance constants are perhaps easier to define in a physical sense
than the corresponding force constants as discussed by Jones. The
compliance constants are used in calculating the interaction coordinates
of the type, (/)r = nu/nix. Using these coordinates it is possible to
determine the amount of stretching (or) contraction of the bonds for
minimum energy configuration, when one particular bond is stretched.
From Table 1, it is noted that the stretching compliance constants are
always lesser than the bending compliance constants for both inplane and
out-of-plane bending.

The mean amplitudes of vibration at 298 K are given in Table 3. It is
seen that the mean amplitudes of vibration /(O-H’), /(C-O), (C-H)
and /(C-O’) are almost the same for the pair of isotopically substituted
molecules. The mean amplitudes of vibration are compared with both
experimental and theoretical values as shown in Table 3. The Coriolis
coupling constants determined for these molecules are reported in Table 4.
The larger values obtained for some of these constants suggest that the
coupling between the concerned vibrational modes are stronger. The zeta
constants obey the sum rules mentioned earlier.
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