NOTES

Study of the Ion-pair and Triple- Ion Formation by Conductivity Measurement

R. B. SAXENA*

Madhav Institute of Technology and Science, Gwalior-474 005, India

Conductance of lactyl lactic acid in acetic acid-sulphuric acid mixtures (80% acetic acid and different concentration of sulphuric acid) has been measured at 45°C. The equivalent conductance at infinite dilution and the association constants have been calculated using Fuoss and Kraus equation. Addition of sulphuric acid further lowers the rate and exhibits formation of ion-pairs, triple-ions and higher aggregates. Effect of ionic strength, Arrhenius parameters and other molecular concepts etc. have been studied to discuss the mechanistic implications.

In recent years, binary solvents have been utilised for several kinetic mechanism of hydrolysis of esters¹⁻³. Sarkar and Rakshit⁴ have studied the solvent effects on the base hydrolysis of some β -keto and γ -keto esters and shown a mixed mechanism. Hydrolysis of lactyl lactic acid in aqueous solutions earlier reported proceeds only via the conjugate acid form as neutral form is inert⁵ and exhibits ionic acceleration in the presence of sulphuric acid. Mishra and Saxena⁶ have studied the acid hydrolysis of lactyl lactic acid and the influence of solvent media on the rate constants and shown the conventional effects of dimer of the medium. In the present work the relevent experimental data of solvent effect on kinetics of acid hydrolysis of lactyl lactic acid in dimer acetic acid—sulphuric acid media is reported.

Lactyl lactic acid was prepared by reported methods^{5,6} and all other reagents were of A.R. or B.D.H. grade. All the reactions were carried out at 45 + 0.01°C.

The rate of hydrolysis of lactyl lactic acid was studied at its different concentrations. The reaction rate coefficient in lactyl lactic acid hydrolysis was found to be independent of its concentration. Kinetic runs for the hydrolysis of lactyl lactic acid in AcH-H₂SO₄ (v/v) aqueous mixtures were made in the range 0·05-4.0 M H₂SO₄ in 80% AcH at 45°C. Reaction rate was measured by following conductivity method^{7,8}. Pseudofirst order rate coefficients with respect to lactyl lactic acid were obtained throughout (Table 1). Observed rates gradually decrease with rise in

^{*}Present address: Drug Standardization Research Project, C.C.R.A.&S, Dhanvantari Mandir, Jamnagar-361 008, India.

R. B. SAXENA 205

TABLE 1

HYDROLYSIS OF LACTYL LACTIC ACID IN AcH-H₂SO₄ MIXTURES
Lactyl lactic acid = 9.6×10⁻²M, AcH = 80%, Temp. = 45°C

S. No. [M] min-1 I/[H ₃ SO4] ² AcH ₂ ² HSO ₄ ²] K ₂ ×10 ⁶ K ₃ 01 0.05 0.683 399.900 1.7782 005.916 000 02 0.10 0.632 100.000 1.7061 011.830 000 03 0.15 0.601 044.360 1.6415 017.750 000 04 0.20 0.583 025.020 1.5889 023.670 000 05 0.25 0.563 016.010 1.5394 029.590 000 06 0.30 0.521 011.110 1.4967 035.500 000 07 0.35 0.511 008.162 1.4573 041.370 000 08 0.50 0.453 003.999 1.3564 059.190 001 09 0.75 0.402 001.777 1.2277 088.780 004 10 0.85 0.383 001.385 1.1850 100.600 005 11 1.00 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
02 0.10 0.632 100.000 1.7061 011.830 000 03 0.15 0.601 044.360 1.6415 017.750 000 04 0.20 0.583 025.020 1.5889 023.670 000 05 0.25 0.563 016.010 1.5394 029.590 000 06 0.30 0.521 011.110 1.4967 035.500 000 07 0.35 0.511 008.162 1.4573 041.370 000 08 0.50 0.453 003.999 1.3564 059.190 001 09 0.75 0.402 001.777 1.2277 088.780 004 10 0.85 0.383 001.385 1.1850 100.600 005 11 1.00 0.321 000.000 1.1284 118.300 007 12 1.50 0.292 000.444 0.9799 177.500 017 13 2.00 0.273	S. No.			1/[H ₂ SO ₄] ²			[Triple-ions] K ₃ ×10 ⁷
03 0.15 0.601 044.360 1.6415 017.750 000 04 0.20 0.583 025.020 1.5889 023.670 000 05 0.25 0.563 016.010 1.5394 029.590 000 06 0.30 0.521 011.110 1.4967 035.500 000 07 0.35 0.511 008.162 1.4573 041.370 000 08 0.50 0.453 003.999 1.3564 059.190 001 09 0.75 0.402 001.777 1.2277 088.780 004 10 0.85 0.383 001.385 1.1850 100.600 005 11 1.00 0.321 000.000 1.1284 118.300 007 12 1.50 0.292 000.444 0.9799 177.500 017 13 2.00 0.273 000.250 0.8687 236.700 030 14 2.50 0.235	01	0.05	0.683	399.900	1.7782	005.916	00001.906
04 0.20 0.583 025.020 1.5889 023.670 000 05 0.25 0.563 016.010 1.5394 029.590 000 06 0.30 0.521 011.110 1.4967 035.500 000 07 0.35 0.511 008.162 1.4573 041.370 000 08 0.50 0.453 003.999 1.3564 059.190 001 09 0.75 0.402 001.777 1.2277 088.780 004 10 0.85 0.383 001.385 1.1850 100.600 005 11 1.00 0.321 000.000 1.1284 118.300 007 12 1.50 0.292 000.444 0.9799 177.500 017 13 2.00 0.273 000.250 0.8687 236.700 030 14 2.50 0.235 000.160 0.7807 295.900 047 15 3.00 0.213	02	0.10	0.632	100.000	1.7061	011.830	00007.626
05 0.25 0.563 016.010 1.5394 029.590 000 06 0.30 0.521 011.110 1.4967 035.500 000 07 0.35 0.511 008.162 1.4573 041.370 000 08 0.50 0.453 003.999 1.3564 059.190 001 09 0.75 0.402 001.777 1.2277 088.780 004 10 0.85 0.383 001.385 1.1850 100.600 005 11 1.00 0.321 000.000 1.1284 118.300 007 12 1.50 0.292 000.444 0.9799 177.500 017 13 2.00 0.273 000.250 0.8687 236.700 030 14 2.50 0.235 000.160 0.7807 295.900 047 15 3.00 0.213 000.111 0.7075 355.000 068 16 3.50 0.195	03	0.15	0.601	044.360	1.6415	017.750	00017.160
06 0.30 0.521 011.110 1.4967 035.500 000 07 0.35 0.511 008.162 1.4573 041.370 000 08 0.50 0.453 003.999 1.3564 059.190 001 09 0.75 0.402 001.777 1.2277 088.780 004 10 0.85 0.383 001.385 1.1850 100.600 005 11 1.00 0.321 000.000 1.1284 118.300 007 12 1.50 0.292 000.444 0.9799 177.500 017 13 2.00 0.273 000.250 0.8687 236.700 030 14 2.50 0.235 000.160 0.7807 295.900 047 15 3.00 0.213 000.111 0.7075 355.000 068 16 3.50 0.195 000.082 0.6447 413.700 093	04	0.20	0.583	025.020	1.5889	023.670	00030.500
07 0.35 0.511 008.162 1.4573 041.370 000 08 0.50 0.453 003.999 1.3564 059.190 001 09 0.75 0.402 001.777 1.2277 088.780 004 10 0.85 0.383 001.385 1.1850 100.600 005 11 1.00 0.321 000.000 1.1284 118.300 007 12 1.50 0.292 000.444 0.9799 177.500 017 13 2.00 0.273 000.250 0.8687 236.700 030 14 2.50 0.235 000.160 0.7807 295.900 047 15 3.00 0.213 000.111 0.7075 355.000 068 16 3.50 0.195 000.082 0.6447 413.700 093	05	0.25	0.563	016.010	1.5394	029.590	00047.650
08 0.50 0.453 003.999 1.3564 059.190 001 09 0.75 0.402 001.777 1.2277 088.780 004 10 0.85 0.383 001.385 1.1850 100.600 005 11 1.00 0.321 000.000 1.1284 118.300 007 12 1.50 0.292 000.444 0.9799 177.500 017 13 2.00 0.273 000.250 0.8687 236.700 030 14 2.50 0.235 000.160 0.7807 295.900 047 15 3.00 0.213 000.111 0.7075 355.000 068 16 3.50 0.195 000.082 0.6447 413.700 093	06	0.30	0.521	011.110	1.4967	035.500	00068.630
09 0.75 0.402 001.777 1.2277 088.780 004 10 0.85 0.383 001.385 1.1850 100.600 005 11 1.00 0.321 000.000 1.1284 118.300 007 12 1.50 0.292 000.444 0.9799 177.500 017 13 2.00 0.273 000.250 0.8687 236.700 030 14 2.50 0.235 000.160 0.7807 295.900 047 15 3.00 0.213 000.111 0.7075 355.000 068 16 3.50 0.195 000.082 0.6447 413.700 093	07	0.35	0.511	008.162	1.4573	041.370	00093.440
10 0.85 0.383 001.385 1.1850 100.600 005 11 1.00 0.321 000.000 1.1284 118.300 007 12 1.50 0.292 000.444 0.9799 177.500 017 13 2.00 0.273 000.250 0.8687 236.700 030 14 2.50 0.235 000.160 0.7807 295.900 047 15 3.00 0.213 000.111 0.7075 355.000 068 16 3.50 0.195 000.082 0.6447 413.700 093	08	0.50	0.453	003.999	1.3564	059.190	00182.100
11 1.00 0.321 000.000 1.1284 118.300 007 12 1.50 0.292 000.444 0.9799 177.500 017 13 2.00 0.273 000.250 0.8687 236.700 030 14 2.50 0.235 000.160 0.7807 295.900 047 15 3.00 0.213 000.111 0.7075 355.000 068 16 3.50 0.195 000.082 0.6447 413.700 093	09	0.75	0.402	001.777	1.2277	088.780	00429.000
12 1.50 0.292 000.444 0.9799 177.500 017 13 2.00 0.273 000.250 0.8687 236.700 030 14 2.50 0.235 000.160 0.7807 295.900 047 15 3.00 0.213 000.111 0.7075 355.000 068 16 3.50 0.195 000.082 0.6447 413.700 093	10	0.85	0.383	001.385	1.1850	100.600	00550.900
13 2.00 0.273 000.250 0.8687 236.700 030 14 2.50 0.235 000.160 0.7807 295,900 047 15 3.00 0.213 000.111 0.7075 355.000 068 16 3.50 0.195 000.082 0.6447 413.700 093	11	1.00	0.321	000.000	1.1284	118.300	00762.600
14 2.50 0.235 000.160 0.7807 295.900 047 15 3.00 0.213 000.111 0.7075 355.000 068 16 3.50 0.195 000.082 0.6447 413.700 093	12	1.50	0.292	000.444	0.9799	177.500	01716.000
15 3.00 0.213 000.111 0.7075 355.000 068 16 3.50 0.195 000.082 0.6447 413.700 093	13	2.00	0.273	000.250	0.8687	236.700	03057.000
16 3.50 0.195 000.082 0.6447 413.700 093	14	2.50	0.235	000.160	0.7807	295.900	04765.000
	15	3.00	0.213	000.111	0.7075	355.000	06863.000
17 4.00 0.153 000.063 0.5900 473.500 122	16	3.50	0.195	000.082	0.6447	413.700	09344.000
1, 4.00 0.133 000.003 0.3300 473.300 122	17	4.00	0.153	000.063	0.5900	473.500	12200.000

acidity in the medium due to sulphuric acid. The equilibrium in the presence of various ions can be represented as:

$$CH_3COOH + H_2SO_4 \rightleftharpoons CH_3COOH_2^+ + HSO_4^-$$
 (1)

$$CH_3COOH + H HSO_4 \rightleftharpoons CH_3COOH_2^+HSO_4^-$$
 (2) (solvent ion-pair)

Since H_2SO_4 behaves as the strongest acid amongst others in the medium of AcH, therefore such formation of solvent ion-pairs is quite apparent in 80% AcH. Though experimentally the existence of such ion-pairs is not examined. In the absence of this knowledge, using dissociation constant of H_2SO_4 in 80% AcH i.e. 4.4×10^{-6} , the fraction of the solvent ion-pairs expected to be present at each concentration of H_2SO_4 was calculated:

$$K = \frac{[AcH_{2}^{+}HSO_{4}^{-}]}{[AcH][H_{2}SO_{4}]}$$
 (3)

fraction:

$$[AcH_{2}^{+}HSO_{4}^{-}] = \frac{[AcH_{2}^{+}HSO_{4}^{-}]}{[AcH_{2}^{+}HSO_{4}^{-}] + [AcH] + [H_{2}SO_{4}]}$$
(4)

For the purpose of calculation the first term of the denominator $[AcH_2^+ HSO_4^-]$, eq. (4), is neglected. The magnitudes of the fractions present at each concentration of H_2SO_4 are shown in Table 1. It has been noticed that the presence of such solvent ion-pairs in the medium too has relevant influence on the rate of hydrolysis of lactyl lactic acid; the plot obtained between K_{obs} and $[AcH_2^+ HSO_4^-]$ shows a linear decrease in rate, with specific retardation rate. The intercept of the plot on rate axis also inevitably shows that the specific retardation rate due to dimer $(AcH)_2$ is $7.0 \times 10^{-3} \ min^{-1}$.

It is, therefore, assumed that the constituted medium also helps in the ion aggregation with the substrate molecules i.e. the formation of ion-pairs, triple-ions or still higher aggregates, since acetic acid has low dielectric constant. The degree of association depends on its concentration. Hydrolysis of acetamide in AcH is also explained on similar lines by considering the formation of acetamidium ion, acetamidium ion-pair and triple-ions by Martin and others^{9, 10}. Following the procedure of Fuoss

TABLE 2

CONDUCTANCE DATA FOR LACTYL LACTIC ACID
IN AcH-H₂SO₄ MIXTURES

Lactyl lactic acid = 9.6×10⁻²M, AcH = 80%, Temp. = 45°C

H₂SO₄ [M]	λ_{c} ohm ⁻¹	H ₂ SO ₄ [M]	λ _e ohm-
0.350	069.75	0.025	148.50
0.321	078.85	0.019	151.73
0.250	089.38	0.015	155.84
0.125	113.49	0.010	159.93
0.085	118.67	0.008	168.32
0.054	126.54	0.006	173.54
0.044	128.69	0.004	185.64
0.037	133.79	0.003	180.48
0.029	144.32	0.001	178.86

and Kraus⁸, a plot obtained between $\log \lambda_c$ (equivalent conductance) vs $\log [H_2SO_4]$ is well illustrative of the formation of such ion aggregates (Table 2). The behaviour of the curve obtained can be expressed by the following relation:

$$\lambda_{c} = A/\sqrt{c} + B\sqrt{c} \tag{5}$$

R. B. SAXENA 207

where λ_c is the equivalent conductance at some known concentration of H_2SO_4 . A and B are constants for the medium and c is the total concentration of the acid. Since cm (concentration at minimum) = A/B and $(\lambda_c)_m = 2AB$, association constants for ion-pairs and triple-ions were obtained, and are

$$K_1 = 12.33 \times 10^{-4}$$
 (Ion-pair)
 $K_2 = 7.943 \times 10^{-4}$ (Triple-ions)

The possible ion-pairs, triple-ions or still higher aggregates may be formulated as:

$$[SH^+] + [HSO_4^-] \rightleftharpoons [SH^+HSO_4^-] \tag{6}$$

$$[SH^+] + 2[HSO_4^-] \rightleftharpoons [HSO_4^-SH^+HSO_4^-]$$
 (7)

$$[SH^+] + [CH_3COOH_2^+HSO_4^-] \rightleftharpoons [CH_3COOH_2^+HSO_4^-SH^+]$$
 (8)

where SH+ is the conjugate acid form of the substrate. Such an aggregation involving substrate ions is expected to lower its reactivity on one side and at the same time also responsible to hinder sterically attack by the water molecule. Possibility of attack by a nucleophile (water) can also be lowered due to cage type blockade by the existing ions in the medium even over a neutral molecule of lactyl lactic acid. As changes of protonation of substrate moles by H₂SO₄ are lowered much due to the presence of AcH in the medium^{11, 12},

Therefore, considering the various equilibria for the formation of ion associations and using association constants $K_1 = 12.33 \times 10^{-4}$ and $K_2 = 7.943 \times 10^{-4}$, the concentrations of existing ion-pairs and triple ions were calculated (Table 1). Thus the retardation caused in the observed rate of hydrolysis of ester acid due to these ion-pairs and triple-ions was calculated by using the following relations:

$$4 + \log K_1 = 2.113 \times 10^{-3} - 0.4(6 + \log K_2) [H_2SO_4]$$
 [Lactyl lactic acid] (9)

$$4 + \log K_1 = 1.122 \times 10^{-3} - 0.17(7 + \log K_3) [H_2SO_4]^2$$
 (10)

Since contribution in the observed rates at various acidities of H₂SO₄ due to both ion-pairs and triple-ions is almost constant and is of the

similar order and also as there is not much difference between the two computed association constants (K_1 and K_2), thus the overall rate of hydrolysis of lactyl lactic acid in AcH-H₂SO₄ mixtures could be calculated from the relation:

$$10^3 \text{ kcal} = \text{KS}_1[(\text{AcH})] - \text{KS}_2[\text{CH}_3\text{COOH}_2^+\text{HSO}_4]$$

 $-KS_{3}[SH^{+}HSO_{4}^{-}][HSO_{4}^{-}SH^{+}HSO_{4}^{-}][H_{2}SO_{4}] \times a_{H_{2}O}^{*}$ (11)

where KS₁, KS₂ and KS₃ are the specific retardation rates due to dimer, solvent ion-pair, and ionic associations (both ion-pairs and triple-ions), respectively. The concentrations of the species (AcH)₂ is kept ca.80% throughout [CH₃COOH₂⁺HSO₄], [SH⁺HSO₄] and [HSO₄SH⁺HSO₄] are directly dependent on H₂SO₄ values of $a_{\rm H_{2}O}^{\pm}$ used above 1.0 M are those of H₂SO₄ in aqueous solutions.

Few kinetic runs were also carried out by taking small volumes of water in order to judge its effect on the rate of hydrolysis of lactyl lactic acid keeping concentration of various other ionic species in the system constant. The rate data obtained reveals that the increase in concentration of water molecules helps in accelerating the rate of hydrolysis. Water molecule is, therefore, included in the rate determining step.

In order to investigate the cause of decrease in rates in acid media, it was thought necessary to examine the effect of ionic strength on the rate of hydrolysis of the lactyl lactic acid. Kinetic runs were carried out at a series of ionic strength which were maintained by using appropriate mixtures of sodium sulphate and sulphuric acid. The rate coefficients for all the kinetic runs have been summarised in Table 3.

The graph plotted between rate coefficients and acid molarity, the curves do not show that lactyl lactic acid does not undergo acid catalysis. Since the three linear curves meet at a point on the rate axis making some intercept, the contribution of neutral hydrolysis to the overall rate of the reaction is said to be constant. The negative slopes of the linear curves show the absence of acid catalysed hydrolysis and as the value of negative slopes decreases with the increase in ionic strength and since the slopes of the linear plots increase with the increase in ionic strength, the hydrolysis of lactyl lactic acid exhibits positive salt effect. Since the contribution of the neutral rate, to the overall rate of hydrolysis, is constant, this indicates the non-variation of neutral rate with the changes in ionic strength.

Kinetics of hydrolysis is also studied at four different temperatures i.e. 35° , 45° , 55° and 65° C, which permits the determination of Arrhenius parameters: E = 2.6 kcal. mole⁻¹, A = 9.3 min⁻¹ and -S = 71.0 e.u. Three values of energy of activation (E) in AcH, AcH-HClO₄ and AcH-H₂SO₄ media are contradictory to the observed facts; however, the large magnitude of S in AcH-H₂SO₄ mixture may be due to high solvation and increased alkylation of the substrate^{13, 14}.

TABLE 3 HYDROLYSIS OF LACTYL LACTIC ACID AT DIFFERENT CONSTANT IONIC STRENGTH Lactyl lactic acid = $9.6\times10^{-2}M$, AcH = 80%, Temp. = $45^{\circ}C$

H₂SO₄ (N)	Na ₂ SO ₄ (N)	10 ³ k ₁ min ⁻¹	Intercept		Slope
	μ =	0.05			
0.0050	0.0150	0.6050			
0.0075	0.0125	0.5430			
0.0100	0.0100	0.4340	$7.0 \times 10^{-3} \text{ min}^{-1}$	$\mathbf{k_1}$	-20.0
0.0125	0.0075	0.4210			
0.0150	0.0050	0.4040			
	$\mu =$	0.25			
0.0100	0.0900	0.6483			
0.0250	0.0750	0.5234			
0.0500	0.0500	0.3012	7.0×10 ⁻³ min ⁻¹	k ₁	-07.5
0.0750	0.0250	0.1282			
0.0900	0.0100	0.0184			
	$\mu =$	0.50			
0.0100	0.1900	0.6821			
0.0500	0.1500	0.5642			
0.0750	0.1250	0.4832	7.0×10 ⁻³ min ⁻¹	k ₁	-02.5
0.1000	0.1000	0.4135			
0.1500	0.0500	0.2734			

ACKNOWLEDGEMENT

The author wishes to express his deep indebtedness to Dr. J. P. Mishra, Madhav Institute of Technology and Science, Gwalior, for his valuable suggestions and constant encouragement.

REFERENCES

- 1. B. Jones and J. G. Watkinson, Chem. Soc., 4064 (1958).
- 2. P. K. Nayak and M. K. Rout, J. Indian Chem. Soc., 48, 141 (1971).
- 3. K. K. Satpathy, P. K. Zand and M. K. Rout, Indian J. Chem., 9, 680 (1971).
- M. K. Sarkar and S. C. Rakshit, J. Indian Chem. Soc., 48, 605 (1971); 50, 241 (1973); 51, 589 (1974).
- J. P. Mishra and M. M. Mhala, *Indian J. Chem.*, 8, 243 (1970); M. M. Mhala,
 J. P. Mishra and T. S. Ingle, *Indian J. Chem.*, 10, 1006 (1972).

Vol. 2, No. 2 (1990)

210 ION-PAIR AND TRIPLE-ION FORMATION BY CONDUCTIVITY MEASUREMENT

- 6. R. Krug, Ber. dt. Chem. Ges., 58, 1307 (1925).
- 7. V. Gold, Trans. Faraday Soc., 44, 506 (1948).
- 8. R. M. Fuoss and C. A. Kraus, J. Am. Chem. Soc., 55, 21, 2387 (1933).
- 9. R. J. L. Martin, Aust. J. Chem., 15, 409 (1962); 18, 321 (1965).
- 10. R. J. L. Martin and I. H. Reecee, Aust. J. Chem., 12, 524 (1959).
- J. A. Leisten, J. Chem. Soc., 765 (1959), A. R. Katritzky, A. J. Waring and K. Yates, Tetrahedron, 19, 465 (1963).
- R. B. Homer and R. B. Moodie, J. Chem. Soc., 4377 (1965), K. B. Wiberg and R. J. Evans, J. Am. Chem. Soc., 80, 3019 (1958).
- 13. P. W. C. Barnard, C. A. Bunton, D. Kellerman, M. M. Mhala, B. Silver, C. A. Vernon and V. A. Welch, J. Chem. Soc., 227 (1966).
- C. A. Bunton and J. H. Fendler, J. Am. Chem. Soc., 30, 1365 (1965), H. M. Humphreys and L. P. Hammett, J. Am. Chem. Soc., 78, 521 (1965).

[Received: 16 January 1989; Accepted: 20 August 1989]

AJC-96

POLYMERS'91 (1-4 January 1991) National Chemical Laboratory, Pune-411 008, India

Secretarial Address:

Dr. S. SIVARAM Convenor Polymers'91 National Chemical Laboratory Pune-411 008, India

Tel.: Office: 335234 Fax: 0212-330233

Res.: 334430

Telex: 0145-266: 0145-586 Grams: CHEMISTRY