Triphenyltelluronium Halo (mixed) Titanates (IV)

K. K. VERMA*, ANITA SAINI AND O. P. AGRAWAL

Department of Chemistry ° M. D. University, Rohtak-124 001, India

The paper reports the synthesis and properties of triphenyltelluronium halo (mixed) titanates (IV). 1:1, Ph₃TeX.TiX'₄ and 2:1, 2Ph₃TeX.TiX'₄ (where X, X'=Cl, Br, I) type products are obtained by reactions of Ph₃TeX with TiX'₄. Conductivity, molecular weight determinations and 'H nmr are consistent with their dissociation in dilute solution as Ph₃Te+ and TiX'₄X- or Ph₃Te+ and TiX'₄X²₂- units. The absence of Te-Ti and Te-X vibrations in the far i.r. spectra of these compounds reflects the transfer of halogen atom from Ph₃TeX to TiX'₄ thus resulting in the formation of halo (mixed) titanate (IV) ions.

INTRODUCTION

Triphenyltelluronium halides are known^{1,2} to form adducts with BBr₃, $ZnCl_2$, HgX_2 etc., but such type of compounds have received significantly less attention. Characteristics of only a few adducts of triphenyltelluronium halides, those with $HgX_2^{3,4}$, TiX_4^5 and $SnCl_4^6$ have been reported. We report here the synthesis of adducts of Ph_3TeX with TiX_4' (X, $X_4' = Cl$, Br, I) and describe some of their physical and spectroscopic properties.

EXPERIMENTAL.

Tellurium tetrachloride used was of Riedel (Germany) and was purified before use by a standard method. Triphenyltelluronium chloride was prepared by the method reported in literature. The corresponding bromide and -iodide derivatives were obtained by halogen exchange reactions using KBr and KI (BDH, AnalR quality) in hot water. Titanium-tetrachloride used was of Riedel, Germany and titanium tetrabromide and -tetraiodide were of Fluka-Switzerland.

Preparations

- (i) Adducts of Ph3TeCl with TiBr4 and Til4
- (a) Triphenyltelluronium chlorotetrabromotitanate (IV): [Ph₃Te][TiBr₄Cl]

A solution of Ph₃TeCl (3.95 g, 10 m mol) in about 20 ml of dry chloroform was added to a solution of TiBr₄ (3.68g, 10 m mol) in about 20 ml of dry chloroform, dropwise and with constant stirring. The resultant clear solution was shaken for ca. 3 hrs. The brown crystalline solid thus obtained was filtered, washed with a mixture of chloroform and benzene

(1:1) and dried over P_4O_{10} in vacuo. Yield ca 75%, m.pt. 124-125° (dec.).

(b) Triphenyltelluronium dichlorotetrabromotitanate (IV): [Ph₃Te]₂[TiBr₄Cl₂]

A solution of TiBr₄ (1.84 g, 5 m mol) in about 10 ml of dry chloroform was added to the solution of Ph₃TeCl (3.95 g, 10 m mol) in about 20 ml of dry chloroform, dropwise and with constant stirring. The resultant clear solution was shaken for about 2 hrs. The light brown product thus obtained was filtered, washed with chloroform and dried over P₄O₁₀ in vacuo. Yield ca 65%; m.pt. $160-161^{\circ}$ (dec.).

(c) Triphenyltelluronium chlorotetraiodotitante (IV): [Ph₃Te][TiI₄Cl]

A solution of Ph₃TeCl (1.97 g, 5 m mol) in about 10 ml of dry chloroform was added to the solution of TiI₄ (2.78 g, 5 m mol) in 10 ml of dry chloroform dropwise and with constant stirring. The resultant clear solution was concentrated under vacuum to about 10 ml and left overnight in a vacuum desiccator. A brownish black product was obtained which was filtered, washed with benzene and dried over P_4O_{10} in vacuo. Yield ca 80%; m.pt. 144–145° (dec.)

(d) Triphenyltelluronium dichlorotetraiodotitanate (IV): [Ph₃Te]₂[TiI₄Cl₂]

A solution of TiI₄ (2.78 g, 5 m mol) in 10 ml of chloroform was added to the solution of Ph₃TeCl (3.59 g, 10 m mol) in chloroform (20 ml), dropwise and with constant stirring. The resultant clear solution was concentrated under vacuum to about 10 ml and left in a vacuum desiccator overnight. This resulted in separation of a brown product which was filtered, washed with benzene and dried over P_4O_{10} in vacuo. Yield ca 70%, m.pt. 164-165% (dec.).

(ii) Adducts of Ph3TeBr with TiCl4 and TiI4

(a) Triphenyltelluronium tetrachlorobromotitanate (IV): [Ph3Te][TiCl4Br]

A suspension of Ph₃TeBr (4.38 g, 10 m mol) in about 20 ml of dry chloroform was added to the solution of TiCl₄ (1.9 g, 10 m mol) in dry chloroform (10 ml) dropwise and with constant stirring. The contents were filtered immediately to remove any unreacted Ph₃TeBr and the filtrate was shaken for ca 5 hrs. Reddish product thus obtained was filtered, washed with chloroform and dried over P₄O₁₀ in vacuo. Yield ca. 90%; m.pt. 149–150° (dec.).

(b) Triphenyltelluronium tetrachlorodibromotitanate (IV): [Ph₃Te]₂[TiCl₄Br₂]

A solution of TiCl₄ (0.95 g, 5 m mol) in about 10 ml dry chloro-

form was added to the suspension of Ph₃TeBr (4.38 g, 10 m mol) in chloroform (20 ml) dropwise and with constant stirring. The contents were filtered immediately to remove any Ph₃TeBr left unreacted. The clear solution obtained after filtration was then shaken for ca. 6 hrs. The yellow product thus separated was filtered, washed with chloroform and dried over P₄O₁₀ in vacuo. Yield ca. 80%; m.pt. 134–135° (dec.).

(c) Triphenyltelluronium bromotetraiodotitanate (IV): [Ph₃Te][TiI₄Br]

A suspension of Ph₃TeBr (2.19 g, 5 m mol) in ca. 10 ml of dry chloroform was added to the solution of TiI₄ (2.78 g, 5 m mol) in 20 ml of dry chloroform dropwise and with constant stirring. The contents were filtered immediately to remove any Ph₃TeBr left unreacted and the clear filtrate solution was concentrated under vacuum to about 10 ml. Then a little dry carbon tetrachloride was added to it and shaken for ca. 2 hrs. which resulted in separation of a dark brown solid which was filtered, washed with carbon tetrachloride and dried over P₄O₁₀ in vacuo. Yield ca. 80%; m.pt. 89-90° (dec.).

(d) Triphenyltelluronium dibromotetraiodotitanate (IV): [Ph₃Te]₂[TiI₄Br₂]

A solution of TiI₄ (1.39g, 2.5m mol) in 10 ml of dry chlhoroform was added to the suspension of Ph_3TeBr (2.19g, 5m mol) in chloroform (10 ml) dropwise and with constant stirring. The resultant clear solution obtained after filtration was concentrated under vacuum to about 10 ml. A little dry carbon tetrachloride was added to this and then was shaken for ca. 2 hrs. The brownish black product thus obtained was filtered, washed with a mixture of chloroform and carbon tetrachloride (1:1) and dried over P_4O_{10} in vacuo. Yield ca. 80%; m.pt. 109-110° (dec.).

(iii) Adducts of Ph3Tel with TiCl4 and TiBr4

(a) Triphenyltelluronium tetrachloroiodotitanate (IV): [Ph₃Te][TiCl₄I]

A suspension of Ph₃TeI (2,43 g, 5 m mol) in 10 ml of chloroform was mixed with the solution of TiCl₄ (0.95 g, 5 m mol) in 10 ml of dry chloroform, dropwise and with constant stirring. The contents were filtered immediately to remove any Ph₃TeI left unreacted and then the clear filtrate solution was shaken for ca. 3 hrs. along with the addition of dry carbon tetrachloride. The dark brown product thus obtained was filtered, washed with mixture of chloroform and carbon tetrachloride (1:1) and dried over P₄O₁₀ in vacuo. Yield ca. 90%, m.pt. 89-90° (dec.).

(b) Triphenyltelluronium tetrachlorodiiodotitanate (IV): [Ph1Te]2[TiCl4I2]

A solution of TiCl₄ (0.95 g, 5 m mol) in about 10 ml of dry chloroform was added to the suspension of Ph₃TeI (4.86 g, 10 m mol) in about 20 ml

of dry chloroform, dropwise and with constant stirring. The resultant clear solution obtained after immediate filtration was shaken for about 3 hrs. alongwith addition of a little carbon tetrachloride. A light brown product thus obtained was filtered, washed with a mixture of chloroform and carbon tetrachloride (1:1) and dried over P_4O_{10} in vacuo. Yield ca. 70%; m.pt. 162–163° (dec.).

(c) Triphenyltelluronium tetrabromoiodotitanate (IV): [Ph₃Te][TiBr₄I]

A suspension of Ph₃TeI (2.43 g, 5 m mol) in about 10 ml of dry chloroform was mixed with the solution of TiBr₄ (1.84 g, 5 m mol) in dry chloroform (10 ml), dropwise and with constant stirring. The contents were filtered immediately to remove any Ph₃TeI left unreacted. Then the clear filtrate was shaken for ca. 4 hrs. The light brown product thus obtained filtered, washed with chloroform and dried over P₄O₁₀ in vacuo. Yield ca. 80%; m.pt. 124–125° (dec.).

(d) Triphenyltelluronium tetrabromodiiodotitanate (IV): $[Ph_3Te]_2[TiBr_4I_2]$

A solution of TiBr₄ (1.84 g, 5 m mol) in about 10 ml of dry chloroform was added to the solution of Ph₃TeI (4.86 g, 10 m mol) in about 20 ml of dry chloroform, dropwise and with constant stirring. The resultant clear solution obtained after immediate filtration was then shaken for ca. 4 hrs. The brown product was filtered, washed with chloroform and dried over P₄O₁₀ in vacuo. Yield ca. 85%; m.pt. 144–145° (dcc.).

The compounds were recrystallized from chloroform/acetonitrile. The purity of the compounds was checked by TLC. Tellurium contents were determined volumetrically⁹ and titanium gravimetrically⁹ after decompesing the compound with HNO₃. Halogen contents were estimated potentiometrically¹⁰ after fusing the compound with Na₂CO₃/NaOH. The analytical data are compiled in Table 1.

RESULTS AND DISCUSSION

The reactions of Ph_3TeX with TiX_4' (X, X' = Cl, Br, I) give both 1:1 as well as 2:1 type of adducts. In these adducts Ph_3TeX transfers its halogen atom to TiX_4' to give $TiX_4'X^-$ or $TiX_4'X_2^{2-}$ species. These adducts are crystalline solids, which are fairly stable in dry atmosphere, but get hydrolysed in moist air. The compounds are soluble in polar organic solvents, but insoluble in nonpolar solvents. The adducts triphenyltelluronium halides with TiI_4 have relatively more solubility as compared to others.

The molar conductance data in nitrobenzene, acetonitrile and nitromethane reflect the electrolytic behaviour of these adducts. $\Lambda_{\rm M}$ values for 1:1 adducts are within or close to the expected 11 ranges for 1:1 electrolytes containing ca. $10^{-3}{\rm M}$ of solute and reflect the likely formation in

TABLE 1
ANALYTICAL DATA FOR ADDUCTS OF PhiTeX WITH TiX'4

Compounds	Analysis found (Calculated)							
	Te	Ti	С	Н	CI	Br	ı	
[Ph ₃ Te][TiBr ₄ Cl]	16.18 (16.75)	6.12 (6.28)	28.17 (28.35)	1.95 (1.96)	4.02 (4.66)	41.89 (42.01)		
[Ph ₃ Te] ₂ [TiBr ₄ Cl ₂]	21.93 (22.07)	4.13 (4.14)	37.14 (37.36)	2.61 (2.59)	6.04 (6.14)	27.12 (27.67)	_	
[Ph ₃ Te][TiI ₄ Cl]	13.34 (13.43)	4.98 (5.04)	22.92 (22.74)	1.53 (1.57)	3.46 (3.73)	_	53.11 (53.49)	
[Ph ₃ Te] ₂ [TiI ₄ Cl ₂]	18.73 (18.99)	3.46 (3.56)	32.32 (32.14)	1.10 (1.11)	5.18 (5.28)	_	37.68 (37.80)	
[Ph ₃ Te][TiCl ₄ Br ₂]	20.21 (20.30)	7.49 (7.62)	34.23 (34.36)	2.21 (2.38)	22.43 (22.59)	12.59 (12.72)	_	
[Ph ₃ Te] ₂ [TiCl ₄ Br ₂]	23.74 (23.91)	4.32 (4.48)	40. 3 9 (40.48)	2.67 (2.81)	13.19 (13.30)	14.87 (14.99)	_	
[Ph ₃ Te][TiI ₄ Br]	12.63 (12.83)	4.53 (4.81)	21.53 (21.72)	1.51 (1.50)		7.92 (8.04)	50.98 (51.10)	
[Ph ₃ Te] ₂ [TiI ₄ Br ₂]	17.70 (17.81)	3.18 (3.34)	30.02 (30.15)	2.17 (2.09)	_	11.03 (11.16)	35.31 (35.45)	
[Ph ₃ Te][TiCl ₄ I]	18.63 (18.80)	6.98 (7.09)	31.83 (31.97)	2.31 (2.22)	20.98 (21.02)		18.63 (18.80)	
[Ph ₃ Te] ₂ [TiCl ₄ I ₂]	21.69 (21.97)	4.02 (4.12)	37.11 (37.20)	2.61 (2.58)	12.12 (12.22)	·-	21.19 (21.87)	
[Ph ₃ Te][TiBr ₄ I]	14.73 (14.95)	5.47 (5.61)	25.07 (25.30)	1.83 (1.75)	_	37.42 (37.50)	14.69 (14.88)	
[Ph ₃ Te] ₂ [TiBr ₄ I ₂]	19.01 (19.06)	3.42 (3.57)	32.17 (32.26)	2.13 (2.25)		23.79 (23.90)	18.78 (18.97)	

in solution of $[Ph_3Te]^+$ and $[TiX_4'X]^-$ ions. However \varLambda_M values in nitromethane are generally slightly higher than reported values for 1:1 electrolyte. This may be due to partial decomposition of these adducts in this solvent. The \varLambda_M values for 2:1 adducts in acetonitrile are also close to the expected ranges for 2:1 electrolytes at ca. $10^{-3}M$ of solute which reflect the likely formation of $2[Ph_3Te]^+$ and $[TiX_4'X_2]^{2-}$ ions in solution. However, in nitrobenzene and in nitromethane, the \varLambda_M values are slightly lower than expected, which may be due to incomplete dissociation of these compounds in these solvents or interaction of the solvent molecules with the solute ions. The molecular weight data are consistent with the electrolytic nature of compounds as predicted by conductance measurements. This may be mentioned that molecular weight determination could not be carried out to a wide range of concentration because of rather poor solubility of these compounds in nitrobenzene.

¹H nmr spectra of these adducts in DMSO-d₆/CDCl₃/CD₃CN show almost similar and of only one type phenyl proton chemical shifts as

broad multiplet centred at around δ 7.63-7.64 ppm, which are independent of the halogen. This reflects the dissociation of these adducts as [Ph₃Te]+ and [TiX₄X]⁻ or [TiX₄X₂]²⁻.

The far ir spectra of these adducts (Table 2) show the absence of

TABLE 2

FAR IR DATA (cm⁻¹) FOR ADDUCTS OF Ph₃TeX WITH TiX₄'

Compound		Skeletal/lattice			
	Te-C	Ti-Cl	Ti-Br	°Ti-I	phenyl modes
[Ph ₃ Te][TiBr ₄ Cl]	269s 258s	341m 323mb	244w		200w 184w 161w
[Ph3Te]2[TiBr4Cl2]`	273vs 264vs	340s 313s	241s	:	199m 190m 180m 83s
[Ph ₃ Te][TiI ₄ Cl]	270s 260s	341w 312w		196w 190s	180w
[Ph ₃ Te] ₂ [TiI ₄ Cl ₂]	274s 266s	340m 330m 313m	_	196w	180w 172m 143w 96s 73s
[Ph ₃ Te][TiCl ₄ Br]	264s 256s	344m . 336m 314m	235m		220w 180w 178w
[Ph ₃ Te] ₂ [TiCl ₄ Br ₂]	270s	331m 323m 314m 290m	240m	_	226w 193w 184w 176w
[Ph ₃ Te][Til ₄ Br]	270s 261s		241s	188w	160m 140s
[Ph3Te]2[TiI4Br2]	260s	_	241 m	185m	230m 220m 163m
[Ph ₃ Te][TiCl ₄ l]	268s 256s	336m 313m		201w	184w 173w 160w
[Ph ₃ Te] ₂ [TiCl ₄ I ₂]	273s	346w 333w 321w		192m	234m 203m 175m 72s
[Ph;Te][TiBr ₄ I]	267s		241sh	198w	186w 173w
{Ph ₃ Te} ₂ [TiBr ₄ I ₂]	265s	-	241w	193w	180w 166w 154w

modes which may be assigned as v_{Te-X}^{12-15} . It means that Ph₃TeX transfers its X atom to TiX₄ resulting in the formation of halo (mixed) titanate ions. So Ph₃TeX acts as halogen donor, whereas TiX₄ as an acceptor. All these adducts show very strong bands in the region 256-273 cm⁻¹, which are similar to those assigned to v_{Te-C} in other phenyl derivatives of tellurium. The v_{Te-C} assignments in these compounds are not significantly different from those reported for the free diphenyltelluride unit and the parent Ph₃TeX₅. This indicates the absence of any Te-Ti bond. On the basis of absence of Te-Ti and Te-X bonds it will be suitable to formulate there adducts as [Ph₃Te][TiX₄X] or [Ph₃Te]₂[TiX₄X₂]. Thus, the behaviour of these adducts is similar to those of TiX₄ and SnCl₄, but different from those of HgX₂^{3,4} where Te-Hg bond is reported. v_{Ti-X} vibrations of triphenyltelluronium halo (mixed) titanates are similar to those given in literature for [TiX₄X] and [TiX₄X₂] type species.

Since a number of phenyl modes^{12,13} and skeletal bending modes¹⁷ are also expected in the region $230-165 \, \mathrm{cm^{-1}}$, the Ti-X may in some cases be mixed with these. In addition to these some lattice modes may also be present due to their ionic character. The $[\mathrm{TiX_4'X_2}]^{2-}$ ions in these adducts most probably have *cis*-octahedral structures which are considered relatively more stable.^{17,18}

ACKNOWLEDGEMENTS

The authors are thankful to Prof. B. L. Khandewal, Head, Department of Chemistry IIT Delhi for getting the samples analysed for C and H contents and also getting the ¹H nmr spectra recorded. One of the authors (AS) is thankful to M. D. University, Rohtak for providing JRF.

REFERENCES

- K. J. Irgolic, The Oganic Chemistry of Tellurium, Gordon and Breach, N.Y., pp. 209, 212 (1974).
- K. J. Irgolic and R. A. Zingaro, "Reactions of organotellurium compounds", in Organometallic Reactions, John Wiley and Sons Inc., 2, p. 265 (1971) and reference therein.
- 3. B. L. Khandelwal, S. K. Jain and F. J. Berry, Inorg. Chim. Acta, 59, 193 (1982).
- 4. B. L. Khandelwal and S. K. Jain, Proc. Fourth International Conference on the Organic Chem. of Selenium and Tellurium, Birmingham, 83 (1983).
- 5. K. K. Verma, O. P. Agarwal and Anita Saini, Synth. React. Inorg. Met.-Org. Chem., 20 (1990) (in press).
- 6. —, Snyth. React. Inorg. Met.-Org. Cflem., 20 (1990) (in press).
- 7. Georg Brauer, Handbook of Preparative Inorganic Chemistry, 2nd Edn., Academic Press, N.Y., 1, p. 442 (1967).
- W. H. H. Gunther, J. Nepywoda and J. Y. C. Chu, J. Organometal. Chem., 74, 79 (1974).

- 9. A. I. Vogel, A Text Book of Quantitative Inorganic Analysis, ELBS and Longman, London (1973).
- 10. Derek Jaques, J. Chem. Ed., 42, 429 (1965).
- 11. W. J. Geary, Coord. Chem. Revs., 7, 81 (1971).
- 12. N. S. Dance and C. H. W. Jones, J. Organometal Chem., 152, 175 (1978).
- 13. W. R. Mcwhinnie and M. G. Patel, J. Chem. Soc. (Dalton), 199 (1972).
- 14. W. R. Mcwhinnie and P. Thavornyutikan, J. Chem. Soc. (Dalton), 551 (1972).
- 15. N. S. Dance and W. R. Mcwhinnie, J. Chem. Soc. (Dalton), 43 (1975).
- R. J. H. Clark, Titanium in Comprehensive Inorganic Chemistry, Pergamon Press, N.Y., 3, pp. 415-417 (1973).
- 17. R. J. H. Clark, L. Maresca and R. J. Puddephatt, Inorg. Chem., 7, 1603 (1968).
- A. Finch, P. N. Gates, K. RadCliffe, F. N. Dickson and F. F. Bentley, Chemical Applications of Far Infrared Spectroscopy, Academic Press, London, pp. 166-167 (1970).

(Received: 23 September 1989; Accepted: 10 March 1990) AJC-149

THIRTEEN EUROPEAN CRYSTALLOGRAPHY MEETING

will be held during 25-30 August 1991 at E. Kardebj University, 61001 Ljubbjana, P.O. Box-537, Yugoslavia.

For details:

Prof. L. Golic
Deptt. of Chemistry and Chemical Technology
E-Kardebj University
61001, Ljubbjana, P.O. Box-537, Yugoslavia