NOTES

Reactions of 1,5-bis (salicylaldehyde) Carbohydrazone with Mn (II), Co (II) & Ni (II) Chlorides

SHEKHAR SRIVASTAVA* AND VANITA SRIVASTAVA

School of Studies in Chemistry Jiwaji Univ ersity, Gwalior-474 011, India

Nine complexes of MnCl₂. CoCl₂ and NiCl₂ of the type MLCl₂, M_2LCl_4 and ML_2Cl_2 (where L=1, 5-bis (salicylaldehyde) carbohydrazone and M=Ni, Mn and Co) have been synthesised and characterised by elemental analysis, conductivity, IR and XPS data.

The chemistry of bidentate organic ligands containing O, N donor atoms like semicarbazide, urea, semicarbozone, carbohydrazine¹⁻⁴ and the chemistry of thiocarbohyrazide⁵ have been investigated extensively. But the chemistry of organic ligand 1, 5-bis (carbohydrazone) is very little studied⁶. So it was considered to carry out the reaction of NiCl₂, MnCl₂ and CoCl₂ with 1, 5-bis (salicylaldehyde) carbohydrazone.

Carbohydrazide was prepared by the reported method⁷. The 1,5-bis (salicylaldehyde) carbohydrazone was prepared by reacting carbohydrazide with salicylaldehyde in 1:2 molar ratio.

The $MLCl_2$ complexes were prepared when 1,5-bis(salicylaldehyde) (1 mmol) was dissolved in dry methanol, to it was added MCl_2 (M = Ni, Mn and Co) (1 mmol). The mixture was then refluxed for 8 hrs. The resulting solid product was filtered, washed with methanol and air-dried.

The ML_2Cl_2 and M_2LCl_4 complexes were prepared by similar procedure, by mixing and refluxing 1, 5-bis (salicylaldehyde) carbohydrazone and MCl_2 (M = Co, Ni and Mn) in 2 mmol: 1 mmol and 1 mmol: 2 mmol ratio respectively.

The X-ray photoelectron spectra were recorded on a VG Scientific ESCA-MK II electron spectrometer. The MgK α X-ray line (1253.6 eV) was used for photoexcitation. The Cu2P_{3/2} (BE = 932.8 \pm 0.2) and Au4f_{7/2} (BE = 83.8 \pm 0.1 eV) lines were used to a calibrate the instrument and Ag3d_{5/2} (BE 368.2 eV) was used for cross-checking.⁸

All these complexes $MLCl_2$, ML_2Cl_2 and M_2LCl_4 are stable with high melting points. They all are insoluble in organic solvents except DMF and DMSO. Elemental analysis were within \pm 0.5% for C, H, N and Cl. The molar conductance data below than 60 ohm⁻¹ cm² mol⁻¹ in DMF suggest that all these complexes are non-electrolyte⁹ with composition of $MLCl_2$, ML_2Cl_2 and M_2LCl_4

The IR spectra of 1,5-bis (salicylaldehyde) carbohydrazone give a band in the region 1620–1600 cm⁻¹ due to $\nu_{C=N}$ vibrations and a band

in the region 3300-3200 cm⁻¹ due to v_{N-H} vibrations. These bands were observed to split into two components in the spectra of ML₂Cl₂ and MLCl₂ complexes. The v_{C-N} one component band appears at higher frequency ca. 1640-1610 cm⁻¹ and the other at lower frequency 1600-1585 cm⁻¹, while v_{N-H} one component band also appears at higher frequency ca. 3360-3220 cm⁻¹ and other at lower frequency side ca. 3240-3160 cm⁻¹. But in the IR spectra of M₂LCl₄, v_{C-N} and v_{N-H} bands have shifted higher frequency side ca. 1645-1615 cm⁻¹ and ca. 3365-3230 cm⁻¹ respectively without splitting. This indicates that in ML₂Cl₂ and MLCl₂ complexes one of the v_{C-N} ¹⁰⁻¹¹ groups and one of the v_{N-H} ¹² groups are only coordinated to metal ion and the other to be uncoordinated, but in M₂LCl₄ both v_{C-N} and both v_{N-H} groups are coordinated to metal ion. The bands at ca. 470 cm⁻¹ and ca. 285 cm⁻¹ in all these complexes are assigned to v_{M-N} ¹³ and v_{M-Cl} ¹⁴ respectively.

The binding energy data of Ols and $M2p_{3/2}$, $_{1/2}$ photoelectron peaks for 1,5-bis (salicylaldehyde) carbohydrazone, MCl_2 , ML_2Cl_2 , $MLCl_2$ and M_2LCl_4 have shown that $M2p_{3/2}$, $_{1/2}$ binding energy value is highest in MCl_2 and lowest in ML_2Cl_2 complexes and decreases in the order: $MCl_2 > MLCl_2 = M_2LCl_4 > ML_2Cl_2$ (when L and M is same). From these XPS data one can conclude that 1,5-bis (salicylaldehyde) carbohydrazone is coordinated to metal ion. Further, Ols photoelectron peaks of 1,5-bis-(salicylaldehyde) carbohydrazone and their all metal complexes have shown a single symmetrical photoelectron peak with same binding energy. These observations suggest noncoordination of the oxygen atoms of carbonyl group in all these complexes of 1,5-bis(salicylaldehyde) carbohydrazone¹⁵.

REFERENCES

- R. C. Paul, P. Sharma, L. Subbiah, H. Singh and S. L. Chaddha, J. Inorg. Nucl. Chem., 38, 169 (1976).
- 2. R. N. Ray and B. K. Mohapatra. Indian J. Chem., 19A, 590 (1980).
- A. V. Ablov, N. I. Delichuk and L. F. Chapurina, Russ. J. Inorg. Chem., 15, 571 (1970).
- 4. M. F. A. Dove and D. B. Sowerby, Coord. Chem. Rev., 34, 350 (1981).
- 5. F. Kurzer and M. Wilkinson, Chem. Rev., 70, 145 (1970).
- R. Rastogi, G. K. Parashar and R. N. Kapoor, Synth. React. Inorg. Met-Org. Chem., 15, 1061 (1985).
- 7. E. B. Mohr, J. J. Brezinski and L. F. Audrieth, Inorg. Chem., 4, 32 (1965)
- 8. S. Evan, Handbook of X-ray and Ultraviolet photoelectron Spectroscopy (ed. P. Briggs), Hyden, Rochelle Park, NJ, p. 128 (1975).
- 9. W. L. Greary, Coord. Chem. Rev., 13, 47 (1971).
- 10. S. Satpathy and B. Sahoo, J. Inorg. Nucl. Chem., 32, 2223 (1970).

Vol. 4, No. 4 (1992)

- 11. E. P. Dudek and G. Dudek, Inorg. Nucl. Chem. Lett., 3, 241 (1969).
- 12. B. A. Gingras, R. L. Samorajai and C. H. Baley, Can. J. Chem., 39, 973 (1961).
- 13. H. R. Singh and B. V. Agarwal, J. Indian Chem. Soc., 591 (1988).
- 14. D. P. Singh and V. B. Rana, J. Indian Chem. Soc., 266 (1989).
- 15. Shekhar Srivastava, Applied Spectrosc. Rev., 22, 401 (1988).

[Received: 29 June 1991; Accepted: 15 July 1991]

AJC-379

8th INTERNATIONAL CONFERENCE ON ANALYTICAL CHEMISTRY, BIOSCIENCES, ENVIRONMENTAL POLLUTION AND PHARMACEUTICAL SCIENCES

November 1-2, 1993
JERUSALEM (ISRAEL)

For Details:

Dr. V. M. Bhatnagar Alena Chemicals of Canada P.O. BOX-1779, Cornwall ONT. K6H 5V7, CANADA

15th INTERNATIONAL CONFERENCE ON ANALYTICAL CHEMISTRY, ENVIRONMENTAL POLLUTION, AQUATIC & ATMOSPHERIC ENVIRONMENT, AIR/WATER QUALITY, HAZARDOUS WASTES AND HYDROLOGY

November 22-23, 1993

SHANGHAI OR BEIJING (CHINA)

For Details:

Dr. V. M. Bhatnagar Alena Chemicals of Canada P.O. BOX-1779, Cornwall ONT. K6H 5V7, CANADA