Synthesis of Some New Triazino-Thiadiazolos and Thiadiazolo-Quinazoles as Antifungal Agents

VANDANA DWIVEDI, NIRUPAMA TIWARI, NIZAMUDDIN

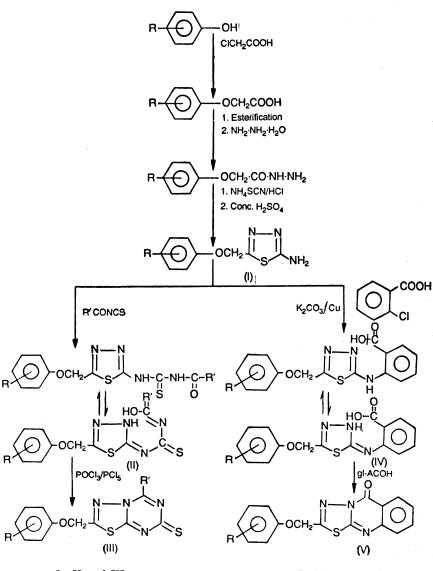
AND

R. K. AGARWAL*

Department of Microbiology, M. L. B. Medical College Jhansi-284 128, India.

Some new 2-aryloxymethyl-5 substituted 1,3,4-thiadiazolo[3,2-a]-1,3,5-triazine-7-thiaones (IIIa-e) and 2-aryloxymethyl-1,3,4-thiadiazolo[2,3-b] quinazolin-4-ones (Va-e) have been prepared. These compounds have been screened for their antifungal activity against two fungi viz. Aspergillus niger and Helminthosporium oryzae at 1000, 100 and 10 ppm concentration. A possible structure activity relationship has been discussed.

INTRODUCTION


The structure (III) incorporates a thiourea structure (-N-CS-N-), thiosemicarbazone (>C=N-N-CS-N<) and a triazine ring. Thiosemicarbazone and thiourea are well known for their use as fungicides, herbicides and bactericides. Likewise sym-triazine derivatives are also known to have biological activities.

Quinazolone derivatives have prodigious range of activities e.g. CNS depresant⁴, hypnotic⁵, anticonvulsant⁶ and pesticidal⁷. The activity is probably due to the presence of structural features of pyrimidine and a >C=O group in nitrogen heterocycles⁸.

These observations coupled with the fact that planarity and compactness of a molecule might augment its other biological activities as it often does with the herbicidal activity^{9,10}, the biolabile s-triazine¹¹, quinazolone¹² and thiadiazole¹² nuclei were fused to yield the title thiadiazolos-triazines (IIIx-c) and thiadiazoloquinazolones (Va-e) which were evaluated for their fungicidal activity.

The synthon 2-amino-5-aryloxymethyl-1,3,4-thiadiazoles (I) were prepared according to the method of Maffii et al^{14} . This on reaction with aroyl/aryl isothiocyanate in acetone furnished the corresponding aroyl/acylthioureas which on refluxing with POCl₃/PCl₅ gave the desired compounds (IIIa-e). Similarly, the treatment of (I) with 2-chlorobenzoic acid in the presence of K_2CO_3 and Cu in ethanol furnished the compounds (IVa-e) which on heating with gl. acetic acid furnished the titled compounds (Va-e) (Scheme I).

SCHEME I

In II and III

a, R = 2,4-diCH₃

 $R' = CH_s$

b, $R = 2,4-diCH_3$ R = 2,4-diCl

 $R' = C_6H_5$

R' = 2,4-diCl

d, R = 4-Cl

C₆H₃-OCH₂-R' = 2.4-diCl-

R = 4-Cl

C6H3-OCH2- $R' = CH_3$

In IV and V

 $R = 3,4-diCH_3$

R = 2-Cl

 $R = 4-CH_3$

R = 2,4-diCl

e, $R = 2-CH_3$

Vol. 4, No. 4 (1992)

The structures of these products were established by elemental and spectral (IR and PMR) analysis.

EXPERIMENTAL

All the melting points were taken in open capillaries and are uncorrected. IR spectra were recorded on Perkin-Elmer-157 spectrophotometer, phase KBr and PMR on Perkin-Elmer R-32 spectrometer in DMSO-d₆ and TMS as internal reference. Elemental analyses (C, H, N) were satisfactory.

1-Benzoyl-3-[5-(2,4-dimethylphenoxymethyl)-1,3,4-thiadiazol-2-yl] thiourea (IIIb)

2-Amino-5-(2,4-dimethyl-chlorophenoxymethyl)-1,3,4-thiadiazole (0.01 mol) and benzoyl isothiocyanate [prepared by refluxing ammonium thiocyanate (0.01 mol) and benzoyl chloride (0.01 mol) in acetone (100 ml)]; in acetone, were refluxed for 3 hrs. Five crystals separated out which were filtered and recrystallised from ethanol, M.pt. 151°C, yield 69%. Anal. Calcd. C₁₉H₁₈O₂S₂N₄: C 57,3; H 4.5; N 14.1; Found: C 57.0; H 4.3; N 13.8%; IR (KBr) cm⁻¹; 3420 (-OH), 3200 (-NH), 1540 (C=N), 1070 (C=S), 1030, 1240 (C—O—C); PMR: 2.3 (S, 6H,—CH₃), 4.5 (S, 2H,—OCH₂), 7.3-8.2 (M, 8H, aromatic protons), 9.9 (S, 1H,—NH). Other compounds are prepared similarly (Table 1).

(2,4-Dimethylphenoxymethyl)-5-Phenyl-1,3,4-Thiadiazolo-[3,2-a]-1,3 5-Triazin-7-Thione (IIIb)

A mixture of IIb (0.01 mol), PCl₅ (0.11 mol) and POCl₃ (1.5 ml) was refluxed for 2 hrs and crushed ice added to it. The solid thus obtained was crystallised from methanol to give IIIb, M.pt. 138°C, yield 65%. Anal. Calc. $C_{19}H_{16}ON_4S_2$: C 60.0; H 4.2; N 14.7; Found: C 59.8; H 4.0; N 14.5%; IR (KBr) cm⁻¹; 1590 (C=N); 11.20 (C=S), 1030 and 1250 (C-O-C); PMR: 2.2 (s, 6H, CH₃), 4.5 (s, 2H, -OCH₃) and 6.6-7.0 (m, 8H, aromatic protons). Other such compounds are similarly prepared (Table 1).

2-(2-Chlorophenoxymethyl)-5-(2-Carboxyphenyl Amino)-1,3,4-Thiadiazole (IVb)

A mixture of 2-amino-5-(2-chlorophenoxy methyl)-1,3,4-thiadiazoles (0.01 mol), 2-chlorobenzoic acid (0.01 mol), potassium carbonate (0.021 mol) and Cu powder (0.5 g) was refluxed in methanol for 8 hrs and solvent removed. The residue was dissolved in H_2O (100 ml). On acidification, with diluted HCl, white mass of the desired compound precipitates out, m. pt. 111°C, yield 52%. Anal. Calcd. $C_{26}H_{12}O_3N_3SCl:C$ 53.1; H 3.3; N 11.6; Found: C 53.0; H 3.2; N 11.2%; IR (KBr) cm⁻¹; 3400 (-OH),

TABLE 1
PHYSICAL DATA OF COMPOUNDS IIa-e, IIIa-e, IVa-e and Va-e

Com- pound No.	M.pt. (°C)	Yield (%)	Molecular formula	Analysis (%) of N	
				Found	Calc.
Ha	169	64	C14H16O2N4S2	16.5	16.6
IIb	151	69	C19H18O2S2N4	13.8	14.0
IIc	187	63	C18H12O3N4S2Cl4	10.2	10.4
IId	138	62	C18H13O3N4S2Cl3	10.8	11.1
He	126	64	C12H11O2N4S2CI	16.2	16.3
IIIa	182	62	C14H14ON4S2	17.5	17.6
IIIb	138	65	C19H16ON4S2	14.5	14.7
IIIc	154	60	C18H10O2N4S2Cl4	10.6	10.7
IIId	149	60	C13H11O2N4S2Cl3	11.4	11.5
llle	139	61	C12H9ON4S2CI	17.0	17.2
IVa	114	62	C18H17O3N3S	11.2	11.8
IVb	111	52	C16H12O3N3SCI	11.2	11.6
IVc	79	50	C17H15O3N3S	11.9	12.3
IVd	102	64	C16H11O3N3SCl2	10.4	10.6
IVe	101	56	C17H15O3N3S	11.9	12.3
Va	167	66	$C_{18}H_{15}O_{2}N_{3}S$	12.2	12.4
Vb	157	48	$C_{16}H_{10}O_2N_3SCl$	12.1	12.2
Vc	83	61	C ₁₇ H ₁₃ O ₂ N ₃ S	12.5	13.0
Vd	178	64	$C_{16}H_{9}O_{2}N_{3}SCl_{2}$	10.6	11.1
Ve	104	63	C17H13O2N3S	12.7	13.0

3260 (-NH), 1710 (>C=O), 1670 (C=N), 1030 and 1230 (C-O-C); PMR 4.5 (s, 2H, $-OCH_2$) and 6.7-7.8) (m, 8H, aromatic protons). Other such compounds are similarly prepared (Table 1).

2-(2-Chlorophenoxymethyl)-1,3,4-Thiadiazolo[2,3-b]-Quinazol-4-one (Vb)

The requisite compound (IVb) (0.01 mol), was dissolved in gl. acetic acid (25 ml) and heated under reflux for 2 hrs. On cooling, the reaction

Vol. 4, No. 4 (1992)

mixture was poured into crushed ice. The solid mass thus obtained was crystallised from methanol. M.pt. 157°C, yield 48%, Anal. Calcd. C₁₆H₁₀O₂N₃SCl C 55.9; H 2.9; N 12.2; Found: C 55.7; H 2.7; N 12.1%; IR (KBr) cm⁻¹; 1710 (>C=O), 1670 (C=N), 1030, 1230 (C-O-C); PMR 4.6 (s, 2H, -OCH₂) and 6.7-7.4 (m, 8H, aromatic proton) Other such compounds are similarly prepared (Table 1).

Antifungal Activity

All the compounds have been screened for their antifungal activity by agar growth technique¹⁵ against two fungi, namely A. niger and H. oryzae. The fungus was planted in three replicate, in agar growth media, mixed with test compounds. The diameter of the fungus colony was measured at 1000, 100 and 10 ppm concentration. Inhibition of the fungus growth was determined as the difference in growth between the control plate and those treated with the test compounds. The activity of the test compound was compared with commercial fungicide carbendazim.

RESULTS AND DISCUSSION

All the compounds, screened, showed moderate toxicity to both the fungal samples but their activity decreases considerably upon dilution. In general triazino-thiadiazoles are more active than corresponding acyl/aroyl thiourea and thiadiazol-quinazoles on both the species of fungi, but they are slightly more active against *H. orygae*.

The activity of triazinothiadiazoles (IIIc and IIId) and carboxyphenyl thiadiazole (IVd) have the activity (85 to 90%) quite comparable with commercial fungicide carbendazim. In general presence of chlorine atom increases fungitoxicity. Further screening of these compounds on wider range of fungi are under process.

ACKNOWLEDGEMENT

Thanks are due to CDRI Lucknow for recording IR and PMR Spectra and two of the authors V.D. and N.T. are thankful CSIR, New Delhi for award of SRF.

REFERENCES

- A. Andreani and D. Bonazzi, Farmaco Ed. Sci., 32, 703 (1977); Chem. Abstr., 88, 15763 (1978).
- H. B. Rajnani and Y. A. Shelut, J. Inst. Chem., 49, 222 (1977); Chem. Abstr., 88, 37757 (1978).
- 3. Sanshin Chem. Co. Ltd., J. P. 5, 896, 077 (1983); Chem. Abstr., 99, 105292 (1983).
- 4. I. K. Kacker and S. H. Zuheer, J. Indian Chem. Soc., 28, 334 (1951).
- 5. M. L. Gujral and R. S. Tewari, Indian J. Med. Res., 43, 637 (1955).

- 6. P. K. Seth and S. S. Parmer, Canad. J. Phys. Pharmaco., 43, 637 (1955).
- 7. Nizamuddin, S. Giri and K. K. Singh, Indian J. Chem., 21B, 377 (1982).
- 8. J. A. G. Michael, Proc. Brit. Insect. Conf., 5th, (1970); Chem. Abstr., 73, 130082 (1970).
- 9. K. Rothwell and R. L. Wain, Ann. Appl. Biol., 51, 163 (1963).
- 10. L. A. Summer, Tetrahedron., 32, 615 (1976).
- K. H. Buechel and W. Draber, Ger. Offen, 1, 940, 628 (1971); Chem. Abstr., 74, 125698 (1971).
- 12. S. Giri and Nizamuddin, Agric. Biol. Chem., Japan, 42, 41 (1978).
- 13. Nizamuddin and B. Mishra, Indian J. Chem., 27B, 576 (1988).
- G. Maffii, E. Testa and R. Ettore, Il Farmaco (Parial) Ed. Sci., 13, 187 (1958);
 Chem. Abstr., 85, 21308 (1959).
- 15. J. G. Horsefall, Bot. Rev., 11, 357 (1945).

(Received: 20 November 1990; Accepted: 19 July 1991)

AJC-346

Polymer Spectroscopy

10th EUROPEAN SYMPOSIUM ON POLYMER SPECTROSCOPY

End-September 1992

ST. PETERSBURG, USSR

For details:

Prof. S. Skorokhodov
Institute of Macromolecular Compounds
USSR Academy of Sciences
Bolshoi Prospekt 31, St. Petersburg, 199004, USSR

Analytical Chemistry

INTERNATIONAL CONFERENCE ON ANALYTICAL CHEMISTRY

20-26 September SAC 92 READING, U.K.

For details:

The Secretary, Analytical Division Royal Society of Chemistry Burlington House, Piccadilly, London WIV OBN, U.K. Tel. + 44(71)4378656