

Novel Fluorinated Imidazolium Ionic Liquids: Eco-friendly, Facile and Efficient Construction, Characterization, *in vitro* Anticancer Activity, Toxicity and *in silico* Analysis

Ahmed H. Albalawi¹, Saud M. Almutairi², Ateyatallah Aljuhani¹, Pramod K. Sahu³, Praveen K. Sahu⁴, Nadjet Rezki¹, Mohamed R. Aouad¹ and Mouslim Messali^{1,*}

¹Department of Chemistry, Taibah University, 30002, Al-Madina Al-Mounawara, Saudi Arabia
²King Abdulaziz City for Science and Technology, Riyadh 11442, P.O. Box 6086, Saudi Arabia
³School of Study in Chemistry, Jiwaji University, Gwalior-474011, India
⁴Department of Industrial Chemsitry, Jiwaji University, Gwalior-474011, India

*Corresponding author: E-mail: mouslim@mail.be

Received: 12 October 2019; Accepted: 8 December 2019; Published online: 31 January 2020; AJC-1977	Received: 12 October 2019;	Accepted: 8 December 2019;	Published online: 31 January 2020;	AJC-19779
---	----------------------------	----------------------------	------------------------------------	-----------

An efficient and facile synthesis of novel fluorinated imidazolium-tagged ionic liquids under microwave irradiation is described. Novel prepared ionic liquids was identified and confirmed by spectroscopic and elemental analysis. Synthesized ionic liquids (**1-12**) was explored for their antiproliferative inhibition potency against three selected human cancer cell lines (MCF-7, HepG-2 and CACO2). Screening results have revealed that some tested ionic liquids exhibited promising activity compared with standard drugs, especially compounds **5** and **6** which consistently produced low IC₅₀ values. Preliminary structure activity relationship (SAR) studies have been performed to identify the relation between molecular structure and activity. *in silico* Analysis of ionic liquids was carried out based on ADME, Lipinski rule, drug likeness, toxicity profiles and other physico-chemical properties. All compounds were safe in toxicity profile and computed LD₅₀ values were in accepted range (2.55-2.89 mol/kg). *in silico* Results have shown that Lipinski rule of five was in accept range, except compound **1** and **2**.

Keywords: Microwave conditions, Ionic liquids, Environmental Benign method, Antitumor activity, in silico Prediction.

INTRODUCTION

At the moment, research on ionic liquids (ILs) have been attract more consideration owing to their outstanding characteristics which can be used as a strong alternative to volatile organic compounds (VOCs) [1]. Ionic liquids are generally defined as a large class of organic salts with a meltingpoint below 100 °C. They exhibit distinctive properties such as extremely zero vapour pressure, non-flammability, high thermal stability, high ionic conductivity, low volatility and excellent solubility with many compounds.

Therefore, a wide range of applications of ionic liquids have been reported in different fields *e.g.*, as solvents in organic synthesis [2], as corrosion inhibitors [3,4], in electrochemistry [5,6], as catalysts [7], in fuel cells [8], in polymer science [9], in separation science [10], in dye-sensitized solar cells [11] and in many other area of research. The foregoing reasons and following on from our work on the synthesis and biological evaluation of ionic liquids have motivated us to continue the exploration of new category of fluorinated imidazolium-tagged ionic liquids [12-16]. Furthermore, the newly synthesized ionic liquids have been tested against breast, liver and colon cancer cell lines (CACO2, MCF-7 and HepG-2) in order to assess to their potential toxicities. To realization of biological results, *in silico* physico-chemical analysis was performed and used to predict their molecular properties.

EXPERIMENTAL

¹H, ¹³C, ¹¹B, ¹⁹F, ³¹P NMR spectra have performed on Varian Unity-Plus (400 MHz) spectrometer and CDCl₃ was used as solvents. High resolution mass spectra has scanned on BrukerMaldi TOF MS. IR has performed on Shimadzu 8201 PC FT-IR spectrophotometer. The elemental analyses were

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

retrieved with the help of 2400 Series II CHNS/O elemental analyzer.

Preparation method: The synthesis of ionic liquid/salt (1-4) by conventional method and microwave irradiation is reported in published article [12].

Preparation of ionic liquids (5-12) by conventional method: Charged ionic liquids (**1-4**) (0.015 mol) in dichloromethane (20 mL). Then added appropriate metal salt (either NaBF₄ or KPF₆; 0.018 mol) and stir for 3 h at 70 °C. After completion, cooled the mass and filtered through Celite bed. Dichloromethane was evaporated to afford the desired ionic liquids (**5-12**) quantitatively.

Preparation by microwave-assisted metathesis reaction of (1-4) leading to ionic liquids (5-12): Prepared a solution of NaBF₄ or KPF₆ (0.015 mol) in a 10 mL of dichloromethane and charged into imidazolium halide ionic liquids (1-4). Resultant reaction mass was irradiated for 7 min at 70 °C. Then product was isolated by the conventional procedure outlined earlier.

Characterization

1-Hexyl-3-(3-phenylpropyl)-1*H*-imidazol-3-ium hexafluorophosphate (6): Yellow oil, ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H} = 0.86$ (t, 3H, CH₃), 1.28 (m, 6H, CH₂), 1.81 (quin, 2H, CH₂), 2.18 (quin, 2H, CH₂), 2.65 (t, 2H, CH₂), 4.08 (t, 2H, CH₂), 4.17 (t, 2H, CH₂), 7.15-718 (m, 3H, Ar-H), 7.23-7.27 (m, 4H, Ar-H), 8.49 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C} = 13.9$ (CH₃), 22.3 (CH₂), 25.7 (CH₂), 29.8 (CH₂), 31 (CH₂), 31.3 (CH₂), 32.3 (CH₂), 49.6 (CH₂), 50.1 (CH₂), 122.4 (CH), 122.4 (CH), 126.4 (CH), 128.4 (CH), 128.6 (CH), 134.9 (CH), 139.9 (C); ¹⁹F NMR (DMSO-*d*₆, 376.5 MHz): $\delta =$ -70.79 to -72.68 (septt); ³¹P NMR (CDCl₃, 162 MHz): $\delta =$ -144.21, MS [M–PF₆]⁺ 271.31 found for C₁₈H₂₇N₂⁺, (Found: C, 51.83; H, 6.60; N, 6.80 %. Calcd. for C₁₈H₂₇N₂PF₆, C, 51.92; H, 6.54; N, 6.73 %).

1-Hexyl-3-phenethyl-1*H*-imidazol-3-ium tetrafluoroborate (7): Yellow oil, ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ = 0.81 (t, 3H, CH₃), 1.20 (m, 6H, CH₂), 1.72 (quin, 2H, CH₂), 3.14 (t, 2H, CH₂), 4, 08 (t, 2H, CH₂), 4.47 (t, 2H, CH₂), 7.14-7.18 (m, 5H, Ar-H), 7.29 (d, 1H, Ar-H), 7.34 (d, 1H, Ar-H), 9.04 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ = 13.9 (CH₃), 22.3 (CH₂), 25.6 (CH₂), 30.0 (CH₂), 30.9 (CH₂), 36.3 (CH₂), 49.9 (CH₂), 50.9 (CH₂), 122.0 (CH), 122.6 (CH), 127.3 (CH), 128.8 (CH), 128.9 (CH), 135.8 (CH), 135.9 (C); ¹⁹F NMR

1-Hexyl-3-phenethyl-1*H*-imidazol-3-ium hexafluorophosphate (8): Yellow oil, ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H} = 0.85$ (t, 3H, CH₃), 1.19 (m, 6H, CH₂), 1.72 (quin, 2H, CH₂), 3.12 (t, 2H, CH₂), 4, 03 (t, 2H, CH₂), 4.38 (t, 2H, CH₂), 7.13 (d, 2H, Ar-H), 7.21-7.24 (m, 5H, Ar-H), 8.29 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C} = 13.9$ (CH₃), 22.3 (CH₂), 25.6 (CH₂), 29.8 (CH₂), 30.9 (CH₂), 36.1 (CH₂), 50.0 (CH₂), 51.0 (CH₂), 122.1 (CH), 122.4 (CH), 127.4 (CH), 128.7 (CH), 129 (CH), 135.0 (CH), 135.9 (C); ¹⁹FNMR (DMSO-*d*₆, 376.5 MHz): $\delta = -70.69-72.59$ (sept); ³¹P NMR (CDCl₃, 162 MHz): $\delta = -144.22$, MS [M–PF₆]⁺257.23 found for C₁₇H₂₅N₂+, (Found: C, 50.81; H, 6.30; N, 7.01 %. Calcd. for C₁₇H₂₅N₂PF₆: C, 50.75; H, 6.26; N, 6.96 %).

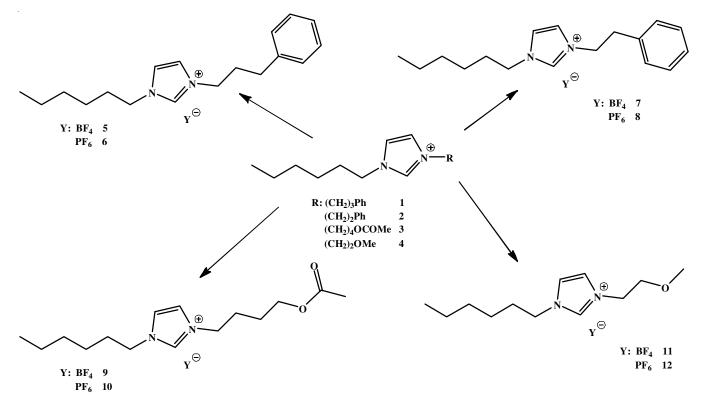
3-(4-Acetoxybutyl)-1-hexyl-1*H***-imidazol-3-ium tetrafluoroborate (9):** Dark brown oil, ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ = 0.84 (t, 3H, CH₃), 1.28 (m, 6H, CH₂), 1.66 (quin, 2H, CH₂), 1.86 (quin, 2H, CH₂), 1.96 (quin, 2H, CH₂), 2.01 (s, 3H, CH₃), 4.06 (t, 2H, CH₂), 4.18 (t, 2H, CH₂), 4.25 (t, 2H, CH₂), 7.39 (d, 1H, Ar-H), 7.47 (d, 1H, Ar-H), 8.87 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ = 13.9 (CH₃), 20.9 (CH₃), 22.3 (CH₂), 25.2 (CH₂), 25.8 (CH₂), 26.9 (CH₂), 30.0 (CH₂), 31.0 (CH₂), 49.5 (CH₂), 50.1 (CH₂), 63.3 (CH₂), 122.4 (CH), 122.6 (CH), 136.6 (CH), 171.2 (C=O); ¹⁹F NMR (CDCl₃, 376.5 MHz): δ = -150.97; ¹¹B NMR (CDCl₃, 128 MHz): δ = -1.0, MS [M–BF₄]⁺ 267.19 found for C₁₅H₂₇N₂O₂⁺, (Found: C, 50.82; H, 7.74; N, 7.88 %. Calcd. for C₁₅H₂₇N₂O₂BF₄: C, 50.87; H, 7.68; N, 7.91 %).

3-(4-Acetoxybutyl)-1-hexyl-1*H***-imidazol-3-ium hexafluorophosphate (10):** Dark brown oil, ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ = 0.81 (t, 3H, CH₃), 1.25 (m, 6H, CH₂), 1.64 (quin, 2H, CH₂), 1.82 (quin, 2H, CH₂), 1.92 (quin, 2H, CH₂), 1.98 (s, 3H, CH₃), 4.02 (t, 2H, CH₂), 4.12 (t, 2H, CH₂), 4.18 (t, 2H, CH₂), 7.33 (d, 1H, Ar-H), 7.38 (d, 1H, Ar-H), 8.55 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ = 13.8 (CH₃), 20.6 (CH₃), 22.2 (CH₂), 25.1 (CH₂), 25.7 (CH₂), 26.7 (CH₂), 29.8 (CH₂), 30.9 (CH₂), 49.5 (CH₂), 50.1 (CH₂), 63.2 (CH₂), 122.4 (CH), 122.5 (CH), 135.0 (CH), 171.2 (C=O); ¹⁹F NMR (CDCl₃, 376.5 MHz): δ = -71.02 to -72.91 (septt); ³¹P NMR (CDCl₃, 162 MHz): δ = -144.38, MS [M–PF₆]⁺ 267.18 found for C₁₅H₂₇N₂O₂⁺, (Found: C, 43.65; H, 6.57; N, 6.84 %. Calcd. for C₁₅H₂₇N₂O₂PF₆: C, 43.69; H, 6.60; N, 6.79 %).

1-Hexyl-3-(2-methoxyethyl)-1*H*-imidazol-3-ium tetrafluoroborate (11): Dark brown oil, ¹H NMR (400 MHz, CDCl₃): $\delta_{H} = 0.70$ (t, 3H, CH₃), 1.15 (m, 6H, CH₂), 1.75 (quin, 2H, CH₂), 3.20 (s, 3H, CH₃), 3.60 (t, 2H, CH₂), 4.13 (t, 2H, CH₂), 4.33 (t, 2H, CH₂), 7.36 (d, 1H, Ar-H), 7.44 (d, 1H, Ar-H), 9.14 (s, 1H, Ar-H); ¹³C NMR (400 MHz, CDCl₃): $\delta_{C} = 13.8$ (CH₃), 22.2 (CH₂), 25.6 (CH₂), 29.9 (CH₂), 30.9 (CH₂), 49.5 (CH₂), 49.9 (CH₂), 58.7 (CH₃), 69.9 (CH₂), 121.9 (CH), 123.2 (CH), 136.0 (CH); ¹⁹F NMR (CDCl₃, 376.5 MHz): $\delta = -151.10$; ¹¹B NMR (CDCl₃, 128 MHz): $\delta = -1.15$, MS [M–BF₄]⁺211.1 found for C₁₂H₂₃N₂OF, (Found: C, 48.41; H, 7.84; N, 9.36 %. Calcd. for C₁₂H₂₃N₂OBF₄: C, 48.34; H, 7.78; N, 9.40 %). **1-Hexyl-3-(2-methoxyethyl)-1***H*-imidazol-3-ium hexafluorophosphate (12): Dark brown oil, ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ = 0.82 (t, 3H, , CH₃), 1.25 (m, 6H, CH₂), 1.82 (quin, 2H, CH₂), 3.30 (s, 3H, CH₃), 3.66 (t, 2H, CH₂), 4.12 (t, 2H, CH₂), 4.29 (t, 2H, CH₂), 7.31 (d, 1H, Ar-H), 7.37 (d, 1H, Ar-H), 8.48 (s, 1H, Ar-H); ¹³C NMR (400 MHz, CDCl₃): $\delta_{\rm C}$ = 13.8 (CH₃), 22.2 (CH₂), 25.6 (CH₂), 29.8 (CH₂), 30.9 (CH₂), 49.7 (CH₂), 50.0 (CH₂) 58.7 (CH₃), 69.7 (CH₂), 122 (CH), 123.1 (CH), 135.4 (CH); ¹⁹F NMR (CDCl₃, 376.5 MHz): δ = -71.06 to -72.95 (septt); ³¹P NMR (CDCl₃, 162 MHz): δ = -144.39, MS [M–PF₆]⁺211.08 found for C₁₂H₂₃N₂OF, (Found: C, 40.42; H, 6.46; N, 7.90 %. Calcd. for C₁₂H₂₃N₂OPF₆: C, 40.45; H, 6.51; N, 7.86 %).

RESULTS AND DISCUSSION

On the basis of recent research [12-14], our team has resolved to advance the preparation of novel biologically active ionic liquids. Herein, the metathesis reactions of already reported ionic liquids (1-4) [12], were carried out leading to new series of fluorinated ionic liquids 5-12.


Tetrafluoroborate and hexafluorophosphate anions were subsequently ushered in by a metathesis-induced reaction (CP: dichloromethane, 70 °C, 3 h) (**Scheme-I**) [11]. The pure metathesis products were acquired upon thorough filtration followed by filtrate evaporation and resultant residue cleansing with DCM, in addition to a comprehensive filtration process deployed to remove the excess of anion salts (NaBF₄, KPF₆). Finally, an evaporation of the filtrate resulted in considerably high yields of the desired ionic liquids (93-95 %).

In this way, we had managed to execute the preparation of imidazoliumtetrafluoroborate or hexafluorophosphate basedionic liquids. The results are displayed in Table-1 showing that excellent yields (97-99 %) were acquired within the span of a mere 10 min. Thus, it is safe to conclude that the use of microwave irradiation as a capable and environmental benign process for preparation of this new class of ionic liquids provided many advantages, namely, the long reduction time of reaction [12-15]. As observed, regardless of the procedure, the reaction yield is not affected.

TABLE-1 PREPARATION OF IONIC LIQUIDS USING CONVENTIONAL PREPARATION (CP) AND UNDER MICROWAVE IRRADIATION (MW)							
Ionic	Ionic R MY Yield (%) anion metathesis						
liquid	К	101 1	CP^{a}	MW^b			
5	(CH ₂) ₃ Ph	NaBF ₄	94	98			
6	$(C\Pi_2)_3$ FII	KPF_6	95	99			
7	(CH ₂)Ph	NaBF ₄	93	98			
8	(CH_2) FII	KPF_6	94	97			
9	(CH ₂) ₄ OCOCH ₃	NaBF ₄	93	98			
11	$(CH_2)_4OCOCH_3$	KPF_6	93	97			
12		$NaBF_4$	95	99			
15	$(CH_2)_2OCH_3$	KPF_6	94	98			
^a 2 h 70 °C in DCM: ^b 10 min 70 °C Dowor (200 W)							

^a3 h, 70 °C in DCM; ^b10 min, 70 °C, Power (300 W).

Identification and confirmation of structure of ionic liquids and/or salts **5-12** was established by ¹H NMR, ¹³C NMR, FT-IR, MS and elemental analysis. One special note of observation is that the ¹H and ¹³C spectra of **5-12** indicated practically what's having been recorded in those of ionic liquids **1-4** [8]. In this case, apart from ¹H and ¹³C NMR spectra, other specific NMR such as ¹¹B, ¹⁹F and ³¹P NMR were essential to verify the efficiency of metathesis reactions.

Scheme-I: Anion metathesis using conventional preparation (CP): MY, dichloromethane (DCM), 70 °C, 3 h; and microwave irradiation conditions (MW): DCM, 70 °C, 10 min. M = Na, K

Firstly, NMR interpretation has started with ionic liquids (5) to establishment of structure contains an alkyl chain 5-8. PMR spectra of ionic liquid 5 displayed the triplet estimated at 0.81 ppm which assigned hexyl group containing aliphatic methyl protons. Peaks at 1.24 ppm arise due to eight methylene groups, signal appeared at 1.24 ppm which confirmed three methylene protons and another two signal as quintet form at slightly downfield *i.e.* 1.80 and 2.17 ppm appeared owing to two methylene protons. Proton signal at 2.63 ppm as triplet has arisen due to CH₂CH₂Ph and signal appeared at 4.13 and 4.22 ppm for NCH₂CH₂. However ionic liquid 5 contain imidazolium moiety which has shown signals itself as doublet at 7.34 and 7.39 ppm and as singlet at 9.18 ppm. Remaining aromatic proton promptly recorded at 7.11 to 7.19 ppm.

¹³C NMR of compound **5** contained a signal at 13.9 ppm which is obviously owing to CH₃ group. ¹³C NMR of ionic liquid **5** also displayed signals at 49.5 ppm which assigned for CH₂ and another signal at 50 ppm which has arisen due to -NCH₂ moiety and remaining six aliphatic –CH₂ groups were recorded as usual as appeared in carbon NMR which included 32.3, 31.4, 31.0, 30.0, 25.7 and 22.3 ppm. Moreover, corresponding signal between 122.3 to 139.8 ppm has came out for characteristic imidazolium ring. Further, ¹³C-DEPT NMR has proven above supporting results without ambiguity.

Anion exchange approach is proved without ambiguity by ¹¹B NMR and ¹⁹F NMR since their spectra contained peaks just about δ_B -1 and δ_F -148 ppm for distinctive B or F in BF₄.

Furthermore, probable structure has also been justify by FT-IR which has shown bands at 2982 and 2912 cm⁻¹ corresponding to C=CH stretching and maintained a considerably high level of consistency with CH₂ and CH₃ moiety. In addition of above characterization, our proposed structure elucidated by mass spectra of ionic liquid **2** with obtained known mass as 271.330 *m/z*, were established in uniformity.

Novel synthesized ionic liquids **9-10** containing imidazolium moiety with ester group was fully characterized. The ionic liquid **10** became established to prove the metathesis reaction of the ionic liquid **3**. Given the fact that particular portion of ionic liquid **10** was present in ionic liquid **5**. Three proton units chosen to the *CH*₃CO in ¹H NMR spectra of ionic liquid **10** has demonstrated singlet at $\delta_{\rm H}$ 1.98 m and characteristic signal of one of the methylene group of the ester functionality (CH₂*CH*₂O) appeared at $\delta_{\rm H}$ 4.02 ppm.

Furthermore, the ¹³C NMR spectrum of ionic liquid **10** contained a congruous signal with the presence of a carbonyl group (CO) at $\delta_{\rm C}$ 171.2 ppm. The spectrum showed also two peaks related the methyl group, respectively, at $\delta_{\rm C}$ 13.8 ppm for (*CH*₃CH₂ CH₂) and at $\delta_{\rm C}$ 20.6 ppm for *CH*₃CO. All these peaks were confirmed clearly by DEPT-C NMR. The ³¹P NMR and ¹⁹F NMR spectra were necessary to confirm the success of the anion exchange. The spectra contained a septuplet at $\delta_{\rm P}$ -144 related to PF₆. In FT-IR, ionic liquids 10 has demonstrated characteristic carbonyl band attached to ester at 1742 cm⁻¹. Finally, the mass spectra of ionic liquids **10** generated a diagram zenith consistent as 267.18 *m/z*. Finally, Structures of the desired ionic liquids **11-12** were confirmed by all spectroscopic analyses. Characterization data has discussed by taking ionic liquid **11** to verify their structures.

In the ¹H NMR spectrum, the methyl group-based proton (OCH₃)-based activity of ionic liquid **11** has been at 3.20 ppm. In contrast, the varying methylene groups (NCH_2CH_2O) protons have been exhibited at their characteristic chemical shifts at 3.60 and 4.33 ppm. On the other hand, the ¹³C NMR spectrum of ionic liquid **11** showed two peaks at δ_c 13.8 and 58.7 attributed CH_3 groups. In addition, remaining aliphatic methylene groups were observed at 22.2, 25.6, 29.9, 30.9, 49.5, 49.9, 69.9 ppm. Furthermore, ¹¹B NMR and ¹⁹F NMR were used to verify the success of the metathesis reaction, since their spectra contained peaks at δ_B -1.1 and δ_F -151.1 ppm. The IR spectra of ionic liquid **11** exhibited band at around 1162 cm⁻¹ assigned to an ether group. In conclusion, confirmed structure has been further verify by the LCMS spectra with a high point consistent desired mass ions [M-BF4]+. Further, purity of all novel synthesized ionic liquids 5-12 expressed through the presence of elemental analysis.

in vitro Cytotoxic activity of ionic liquids (1-12): Ionic liquids 1-12 were screened *in vitro* cytotoxicity against MCF-7 (human breast adenocarcinoma), HepG-2 (human hepatocellular carcinoma) and CACO₂ (colon carcinoma). The measurement of cell growth and viability was confirmed throughout the research study [17]. All results were tabulated in Table-2. Experimental study has found reduction in survival as dose was increased.

in vitro Results have found interesting and positive IC_{50} data (6.19 to 970 µg/mL) which has been tabulated in Table-3. Table-3 clearly demonstrated that the ionic liquid **9** showed higher value. Remarkably, ionic liquids **6** and **7** were obviously active with consistently produced low IC_{50} values for HEPG-2, MCF7 and CACO₂ (6.19 to 14.8 µg/mL) compared with the tested standard drug 5-FU which (12.1 to 27.8 µg/mL).

in silico **Analysis:** To qualify the drug candidate, some preliminary requirement such as pharmacokinetic parameters should be fulfill by any chemical entity. But most of the synthetic drugs are manifested by their side effects. POM is well established *in silico* tools to qualify the drug candidate [13,18-21]. The advantages of *in silico* analysis is screening of molecules either qualify the pharmacokinetic profile or not to save the time and to avoid the failure in clinical trial stage. Hence to observed the impact of molecule for cytotoxicity activity, performed the *in silico* analyses for series of ionic liquids (**1-12**).

in silico Physico-chemical calculation of ionic liquids and/or salts 1-12: To evaluate physico-chemical profile were calculated using molinspiration calculation. The ionic liquids were evaluated to *in silico* ADME/T screening. Physicochemical properties such as lipophilicity (clog P), topological polar surface area (TPSA), volume (VOL), number of O-NH interactions, number of violation and molecular weight (MW). These parameters affect the absorption and bioavailability of drug. Physicochemical was evaluated according to Lipinski's rule which states molecular weight < 500 Da, NH or OH > 5 and TPSA value between 3.24-29.54, which is in good agreement and responsible for drug distribution and rotatable bond indicate good bioavailability [22]. Druglikeness value has been calculated attributed available moiety of the ionic liquids synthesized and all parameters were found in acceptable range (Table-4).

line	(mg/mL)	1	2	3	4	5	6	7	8	9	10	11	12
	1000	2.57	2.95	4.37	12.59	28.71	2.16	2.78	10.36	45.83	6.83	11.56	23.89
	500	4.38	5.86	9.72	24.61	41.36	3.97	4.63	24.52	72.36	15.29	26.78	35.67
	250	7.96	11.49	14.89	38.76	54.08	7.23	9.79	35.91	91.40	28.94	35.24	46.53
	125	15.23	20.37	25.69	49.53	79.56	13.49	16.41	43.84	98.78	42.35	47.15	59.47
	62.5	23.45	32.55	39.56	68.76	92.47	21.78	22.68	60.79	100	58.96	65.23	76.20
HEPG2	31.25	35.20	40.93	63.84	85.02	98.65	30.82	35.09	78.27	100	79.41	80.97	88.16
	15.6	46.82	54.28	79.60	94.58	100	41.39	43.81	91.32	100	91.78	91.76	94.28
	7.8	60.67	68.19	88.74	98.79	100	48.15	50.92	99.75	100	97.66	98.24	99.63
	3.9	76.12	81.42	93.21	100	100	56.92	67.48	100	100	100	100	100
	2	83.64	90.68	99.76	100	100	78.26	82.76	100	100	100	100	100
	0	100	100	100	100	100	100	100	100	100	100	100	100
	1000	4.87	4.92	8.75	14.31	27.86	2.59	3.42	8.64	48.14	17.24	19.58	29.43
	500	8.56	9.81	19.54	25.89	41.25	4.98	5.97	19.78	79.25	30.83	32.75	45.20
	250	17.23	21.46	30.47	40.62	58.72	10.73	11.48	31.49	94.06	44.72	45.64	69.61
	125	26.74	31.79	38.36	57.28	76.39	18.64	20.75	45.37	99.23	62.35	71.28	87.69
	62.5	38.65	42.60	49.54	73.19	90.73	27.51	30.68	68.12	100	79.04	89.41	95.27
MCF7	31.25	51.43	53.94	72.31	88.06	98.04	36.92	38.96	90.64	100	91.38	97.28	99.13
	15.6	64.08	70.25	86.24	97.63	100	45.27	47.54	98.51	100	99.21	100	100
	7.8	79.56	84.37	96.38	100	100	53.18	72.39	100	100	100	100	100
	3.9	90.42	94.29	99.17	100	100	60.95	84.61	100	100	100	100	100
	2	98.17	99.63	100	100	100	78.23	90.58	100	100	100	100	100
	0	100	100	100	100	100	100	100	100	100	100	100	100
	1000	2.38	3.16	5.92	9.04	20.95	1.98	2.17	8.64	36.21	9.85	15.74	18.26
	500	4.92	6.73	10.85	18.75	36.41	3.64	3.89	19.78	68.94	20.99	24.83	27.19
	250	10.65	14.98	18.74	31.92	49.27	6.13	6.74	31.49	89.56	35.17	37.60	48.86
	125	19.48	23.04	29.43	44.17	72.38	11.96	13.58	45.37	97.13	46.29	49.82	67.24
	62.5	30.81	34.92	37.68	62.39	88.60	19.88	18.72	68.12	100	70.12	74.95	89.73
CACO ₂	31.25	41.29	46.87	70.91	80.95	95.21	28.75	26.53	90.64	100	85.93	92.41	97.04
	15.6	54.38	69.46	86.23	91.43	99.74	36.94	39.16	98.51	100	94.67	99.73	100
	7.8	68.73	85.98	95.14	97.68	100	43.87	48.24	100	100	98.56	100	100
	3.9	83.04	92.45	98.72	100	100	58.69	70.31	100	100	100	100	100
	2	89.67	97.31	100	100	100	72.34	85.62	100	100	100	100	100
	0	100	100	100	100	100	100	100	100	100	100	100	100
						TABI	.E-3						
				IC ₅₀	(mg/mL) V	ALUES O		IQUIDS 1	-12				
Cell line		1	2	3	4	5	6	7	8	9	10	11	12
HepG-2		13.8	20.6	49.1	123	330	6.98	8.81	102	921	96.2	115	216
MCF7	27.8	34.7	42.1	61.9	180	375	10.9	14.8	225	970	213	229	325
CACO ₂	13.3	20.8	29	50.9	105	246	6.19	7.49	112	789	115	125	242

TABLE-2 in vitro SCREENING OF SYNTHESIZED COMPOUNDS 1-12

Viability (%)

-		DI		
	A	в	E	-4

in silico PREDICTION OF PHYSICO-CHEMICAL CALCULATIONS OF IONIC LIQUIDS 1-12 MW Physico-chemical properties Drug likeness Compd. TPSA (g/mol) O/NH VIOL VOL GPC ICM ΚI NRL ΡI EN 0.07 1 351 3.24 0 312 0.19 0.06 -0.08 0.08 0.12 1 2 0 337 3.24 1 295 0.13 0.04 -0.13 0.00 0.000.10 0 3 302 29.54 0 298 0.06 0.02 -0.23 0.02 0.02 0.14 4 291 12.47 0 0 250 -0.26 -0.16 -0.42 -0.42 -0.38 -0.10 5 339 3.24 0 0 350 0.23 0.20 -0.02 0.15 0.16 0.11 6 397 3.24 0 0 349 0.21 0.06 -0.02 0.14 0.16 0.10 7 325 12.36 0 0 0.20 -0.03 0.10 333 0.19 0.11 0.13 0 0.09 8 383 3.24 0 332 0.19 0.04 -0.03 0.11 0.15 9 335 29.54 0 0 340 0.12 0.16 -0.12 0.12 0.13 0.14 393 29.54 0 0 0.02 -0.11 0.12 10 339 0.12 0.12 0.15 279 12.47 0 0 0.09 -0.17 -0.12 0.01 287 -0.04 -0.14 11 337 12.47 0 0 0.04 -0.07 -0.08 -0.04 -0.01 0.03 287 12

in silico Toxicity and log P: Calculated log P value has given in Table-5 which has suggested that all ionic liquids have showed log P value in the range and assumed to be good lipophilic properties. Table-5 also represents toxicity screening

Conc. (mg/mL)

Cell

for synthesized ionic liquids. In discovery of new drug, toxicity analysis is require for qualifying of any drug, it mean that toxicity study is important for new drug before going in clinical trial. *in silico* Results exhibited that all ionic liquids are nonmutagenic, non-carcinogenic and safe.

TABLE-5 in silico SCREENING OF TOXICITY AND log P OF IONIC LIQUIDS 1-12							
Compd.	$\begin{array}{c} \text{AMES} & \text{Rat acute} \\ \text{Compd.} & \begin{array}{c} \text{AMES} & \text{Carcinogenecity} & \text{toxicity } \text{LD}_{\text{s0}} \\ & (\text{mol/kg}) \end{array}$						
1	Non-toxic	Non-toxic	2.55	5.54			
2	Non-toxic	Non-toxic	2.55	5.04			
3	Non-toxic	Non-toxic	2.68	3.70			
4	Non-toxic	Non-toxic	2.76	3.20			
5	Non-toxic	Non-toxic	2.63	1.82			
6	Non-toxic	Non-toxic	2.68	3.30			
7	Non-toxic	Non-toxic	2.63	1.30			
8	Non-toxic	Non-toxic	2.68	2.79			
9	Non-toxic	Non-toxic	2.76	0.12			
10	Non-toxic	Non-toxic	2.81	1.59			
11	Non-toxic	Non-toxic	2.82	-0.51			
12	Non-toxic	Non-toxic	2.89	0.96			

in silico **Pharmacokinetic evaluation:** Oral bioavailability and pharmacokinetic profile is related each other and necessary to qualify for good oral bioavailability of ionic liquids. *in silico* Pharmacokinetic evaluation of synthesized ionic liquids was presented in Table-6. The skin permeability (P_{Skin}) of pharmaceuticals is a key feature [23] and the calculated P_{Skin} (-3.56 to -5.86) indicating least permeability through the skin. The distribution properties were evaluated in terms of blood brain barrier (BBB) permeability proposing that moderate amount of ionic liquids will pass the BBB. The computed metabolism of ionic liquids (Table-6) revealed no inhibitor of CYP1A2 and CYP2D6.

in silico Bioavailability screening: *in silico* Bioavailability screening has summarized in Table-7. All ionic liquids follow Lipinski's rule and Veber rule, except compound **10** in respect of Veber rule. In case of Ghose rule, only 6 ionic liquids (compounds **1-4**, **7** and **11**) have follow with good bioavailability

TABLE-7 in silico BIOAVAILABILITY PREDICTION							
	in silico Bioavailability						
Comp.	Lipinski	Ghose	Veber	Bioavailab- ility score			
1	Yes	Yes	Yes	0.55			
2	Yes	Yes	Yes	0.55			
3	Yes	Yes	Yes	0.55			
4	Yes	Yes	Yes	0.55			
5	Yes	No; 1 violation	Yes	0.56			
6	Yes	No; 1 violation	Yes	0.56			
7	Yes	Yes	Yes	0.56			
8	Yes	No; 1 violation	Yes	0.56			
9	Yes	No; 1 violation	Yes	0.56			
10	Yes	No; 1 violation	No; 1 violation	0.56			
11	Yes	Yes	Yes	0.56			
12	Yes	No;1 violation	Yes	0.56			

score (0.55). *in silico* data has revealed that all ionic liquids were in good agreement in term of bioavailability.

Conclusion

Present study reports the design and synthesis of novel ionic liquids 5-12 having imidazolium moiety containing fluorinated anions under microwave irradiation and conventional conditions. Ionic liquids 1-12 were evaluated for their anticancer activity and compared with the used standard drug, two of them, namely, ionic liquids 6 and 7 displayed cytotoxicity potency against all examined cancer cell lines. After excellent in vitro cyctotoxicity screening results, further confirmed the realization of biological data by in silico screening. in silico screening provide the support to antiproliferative activity. Physico-chemical evaluation showed good druglikeness and interacted with various enzymatic targets. In addition, toxicity analysis has revealed that all compounds were safe for mutagenecity and carcinogenicity and computed LD₅₀ values were in accepted range (2.55-2.89 mol/kg). In addition, all ionic liquids has pursue Lipinski and violation rule. in silico Bioavailability analysis has demonstrated that synthesized ionic liquids follow Lipinski's rule and Veber rule, apart from compound 10 with good bioavailability score.

TABLE-6 in silico PHARMACOKINETICS PREDICTION OF SYNTHESIZED IONIC LIQUIDS 1-12								
	in silico Pharmacokinetics							
Compound	GI absorption	BBB permeant	P-gp	CYP1A2 inhibitor	CYP2D6 inhibitor	log K _p (skin permeation), cm/s		
1	High	Yes	No	No	No	-4.48		
2	High	Yes	No	No	No	-4.65		
3	High	Yes	No	No	No	-5.52		
4	High	Yes	No	No	No	-5.86		
5	High	No	No	No	No	-3.91		
6	Low	No	Yes	No	No	-3.56		
7	High	Yes	No	No	No	-4.08		
8	Low	No	No	No	No	-3.76		
9	High	Yes	No	No	No	-5.10		
10	Low	No	No	No	No	-4.75		
11	High	Yes	No	No	No	-5.30		
12	Low	No	No	No	No	-4.94		

GI: Gastro Intestinal; P-gp: P-glycoprotein; BBB: Blood Brain Barrier; CYP1A2: Cytochrome P450 family 1 subfamily A member 2 (PDB: 2HI4); CYP2D6: Cytochrome P450 family 2 subfamily D member 6 (PDB: 5TFT)

ACKNOWLEDGEMENTS

The authors are indebted to King Abdulaziz City for Science and technology for financial support of this work through the funded project No. 1-17-01-006-0027.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- M.J. Earle and K.R. Seddon, *Pure Appl. Chem.*, **72**, 1391 (2000); https://doi.org/10.1351/pac200072071391
- H. Zhao, Y. Zhang and Z. Yuan, *Aldrichim Acta*, 454, 75 (2002); https://doi.org/10.1016/S0003-2670(01)01543-4
- F. El-Hajjaji, M. Messali, M.V.M. de Yuso, E. Rodríguez-Castellón, S. Almutairi, T.J. Bandosz and M. Algarra, *J. Colloid Interface Sci.*, 541, 418 (2019); https://doi.org/10.1016/j.jcis.2019.01.113
- F. El-Hajjaji, M. Messali, A. Aljuhani, M.R. Aouad, B. Hammouti, M.E. Belghiti, D.S. Chauhan and M.A. Quraishi, *J. Mol. Liq.*, 249, 997 (2018);
- https://doi.org/10.1016/j.molliq.2017.11.111
- 5. F. Endres, *ChemPhysChem*, **3**, 144 (2002); https://doi.org/10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO:2-#
- A.F. Al-Ghamdi, M. Messali and S.A. Ahmed, *J. Mater. Environ. Sci.*, 2, 215 (2011).
- 7. T. Welton, *Coord. Chem. Rev.*, **248**, 2459 (2004); https://doi.org/10.1016/j.ccr.2004.04.015
- D.R. Macfarlane, M. Forsyth, P.C. Howlett, J.M. Pringle, J. Sun, G. Annat, W. Neil and E. Izgorodina, *Acc. Chem. Res.*, 40, 1165 (2007); <u>https://doi.org/10.1021/ar7000952</u>
- 9. P. Kubisa, *Prog. Polym. Sci.*, **29**, 3 (2004); https://doi.org/10.1016/j.progpolymsci.2003.10.002

- H. Qiu, S. Jiang, X. Liu and L.J. Zhao, J. Chromatogr. A, 1116, 46 (2006); https://doi.org/10.1016/j.chroma.2006.03.016
- R. Kawano, H. Matsui, C. Matsuyama, A. Sato, M.A.B.H. Susan, N. Tanabe and M. Watanabe, J. Photochem. Photobiol. Chem., 164, 87 (2004); <u>https://doi.org/10.1016/j.jphotochem.2003.12.019</u>
- A.H. Albalawi, W.S. El-Sayed, A. Aljuhani, S.M. Almutairi, N. Rezki, M.R. Aouad and M. Messali, *Molecules*, 23, 1727 (2018); <u>https://doi.org/10.3390/molecules23071727</u>
- M. Messali, M.R. Aouad, A.A. Ali, N. Rezki, T. Ben Hadda and B. Hammouti, *Med. Chem. Res.*, 24, 1387 (2015); <u>https://doi.org/10.1007/s00044-014-1211-x</u>
- 14. M. Messali, *Molecules*, **20**, 14936 (2015);
- https://doi.org/10.3390/molecules200814936 15. M. Messali, *Acta Pharm.*, **65**, 253 (2015);
- https://doi.org/10.1515/acph-2015-0028 16. M. Messali, *Arab. J. Chem.*, **9**, S564 (2016); https://doi.org/10.1016/j.arabjc.2011.06.030
- M.I. Atta-Ur-Rahman and W.J. Thomsen, Bioassay Technique for Drug Development, Harwood Academic Publishers (2001).
- D.Y. Alawadi, H.A. Saadeh, H. Kaur, K. Goyal, R. Sehgal, T.B. Hadda, N.A. ElSawy and M.S. Mubarak, *Med. Chem. Res.*, 24, 1196 (2014); <u>https://doi.org/10.1007/s00044-014</u>
- M. Messali, M. Aouad, W. El-Sayed, A. Al-Sheikh Ali, T.B. Hadda and B. Hammouti, *Molecules*, 19, 11741 (2014); <u>https://doi.org/10.3390/molecules190811741</u>
- M.H. Youssoufi, P.K. Sahu, P.K. Sahu, D.D. Agarwal, M. Ahmad, M. Messali, S. Lahsasni and T.B. Hadda, *Med. Chem. Res.*, 24, 2381 (2015); <u>https://doi.org/10.1007/s00044-014-1297-1</u>
- B. Bennani, A. Kerbal, B.F. Baba, M. Daoudi, I. Warad, M. Aljofan, A.M. Alafeefy, V. Masand and T.B. Hadda, *Med. Chem. Res.*, 22, 4798 (2013);
- https://doi.org/10.1007/s00044-012-0392-4 22. D.E. Clark, *J. Pharm. Sci.*, **88**, 815 (1999);
- https://doi.org/10.1021/js980402t
- 23. S. Singh and J. Singh, *Med. Res. Rev.*, **13**, 569 (1993); https://doi.org/10.1002/med.2610130504