Synthesis of Some Substituted Indane-Amino Acid Derivatives

A. M. GOMMAA*, M. A. EL-GAZZAR, M. F. BADIE, F. S. AHMED and A. H. M. RADI

Chemistry Department, Faculty of Science Al-Azhar University, Nasr City, Cairo, Egypt

Synthesis and antimicrobial evaluation of some new 3-keto-4,7-dimethylindane-1-carbonylamino acid methyl esters (III-VIII), 3-keto-4,5-benzoindane-1-carbonylamino acid methyl esters (IX-XII) and the corresponding hydrazides and some dipeptide methyl ester derivatives (XIII-XXXII) are described.

INTRODUCTION

Owing to the fact that amino acids play an important role in creating or improving the activities of many aromatic and heterocyclic derivatives¹⁻⁵, the synthesis of substituted indanes containing different amino acid residues incorporated in an amide linkage is reported in this paper. The present investigation is concerned with the synthesis of some 3-keto-4,7-dimethyl- or 3-keto-4,5-benzo-indane-1-carbonyl-amino acid methyl esters (III-XII) and their corresponding hydrazides (XIII-XXII) and some dipeptide derivatives (XXIII-XXXII) for their microbiological evaluation.

RESULTS AND DISCUSSION

3-Keto-4,7-dimethyl- or 3-keto-4,5-benzo-indane-1-carbonylamino acid methyl esters (III-XII) were prepared by condensation of 3-keto-4,7-dimethylindane-1-carboxylic acid (I) or 3-keto-4,5-benzoindane-1-carboxylic acid (II) with amino acid methyl ester hydrochlorides in THF-Et₃N medium using the dicyclohexylcarbodiimide (DCC) procedure. The time required for completion of the reaction (3-4 hrs) was monitored by TLC. Most of the products (III-XII) were easily isolated, purified, recrystallized and obtained in 50-71% yield.

Treatment of the methyl esters (III-XII) with hydrazine hydrate in ethanol gave the corresponding 3-keto-4,7-dimethyl- or 3-keto-4,5-benzo-indane-1-carbonylamino acid hydrazides (XIII-XXII). All the products (XIII-XXII) were homogeneous on TLC, obtained in 73-83% yield and gave positive silver nitrate reactions.

For the preparation of the dipeptide methyl esters (XXIII-XXXII), the hydrazides (XIII-XXII) were converted into the corresponding azides. The azides on coupling with amino acid methyl esters furnished the desired 3-keto-4,7-dimethyl- or 3-keto-4,5-benzoindane-1-carbonyldipeptide methyl esters (XXIII-XXXII). All the dipeptide derivatives (XXIII-XXXII) were highly purified through repeated recrystallizations and chromatographically homogeneous materials were obtained in 33-65%

yield. Complete acid hydrolysis of (XXX) (6N-HCl, 24 hrs at 100°C) followed by subsequent chromatography, afforded valine and tyrosine (positive ninhydrin spots).

The structures of the synthesized compounds (III-XXXII) were supported by their elemental analyses, IR, UV and ¹H-NMR spectral data, spot reactions and chromatographic studies (Table 1, compounds III-XXXII).

Compounds of type A

Compounds of type B

Biological Screening

The antimicrobial activities of the synthesized compounds (III-XXXII) were tested using the hole plate and filter paper disc method^{6,7}. The effect was studied on different strains of various microorganisms, *Bacillus subtilis*, *Sarcina lutea*, *Staphylococcus aureus*, *Escherichia coli*, *Pseudomonas aeruginosa* and *Penicillium chrysogenum*. The results are given in Table 2.

EXPERIMENTAL

Thin layer chromatography (TLC, R_f values) was carried out on Silica Gel-G (BDH), using benzene-ethyl acetate-acetic acid (12:4:1) as solvent system and an iodine-potassium iodide (20%) solution or chlorosulphonic acid-acetic acid (1:3) as detection reagent. Benzidine, ninhydrin, silver nitrate and hydroxamate reactions were used for the detection of amino acid derivatives on Whatman No. I paper chromatograms (spot reactions). Optical rotations $[\alpha]_D^{20}$ were taken in a Zeiss polarimeter, 1 dm tube (c=5, in acetone). The IR spectra (KBr, v_{max} in cm⁻¹) were recorded on a Unicam SP 1200 spectrophotometer. The UV spectra (ethanol, λ_{max} in nm, $\log \epsilon$), on a Unicam SP 8000 spectrophotometer and ¹H-NMR spectra in DMSO-d₆ were run on a Varian T-60 A instrument (chemical shift in (δ), ppm) using TMS as internal standard. Melting points are uncorrected.

3-Keto-4:7-Dimethylindane-1-Carboxylic Acid (I) and 3-Keto-4:5-Benzoindane-1-Carboxylic Acid (II)

The titled compounds were prepared according to the procedures d escribed in literature^{8,9}.

Vol. 4, No. 3 (1992)

TABI

R

m.pt. °C

PHYSICAL DATA OF VARIOUS 3-KETO-4: 7-DIMETHY DERIVATIV

Type

Yield %

30

В

280-282

0.64

Comp. No.

R

III	L-Ala-OMe	A	71	235–237	0.9
IV	L-Val-OMe	Α	63	178-180	3.0
V	L-Leu-OMe	Α	50	182-184	0.7
VI	L-Phe-OMe	Α	56	170-172	0.6
VII	L-Tyr-OMe	Α	55	210-212	0.6
VIII	L-Ser-OMe	Α	50	190-192	0.5
IX	L-Val-OMe	В	63	195–197	0.6
X	L-Leu-OMe	В	51	201-203	0.7
ΧI	L-Phe-OMe	В	56	208-210	0.9
XII	L-Tyr-OMe	В	61	210-212	8.0
XIII	$L-Ala-N_2H_3$	Α	67	370-372	0.7
XIV	L-Val-N ₂ H ₃	Α	75	320-3 2 2	0.7
XV	L-Leu-N ₂ H ₃	Α	83	318-320	0.5
XVI	L-Phe-N ₂ H ₃	Α	80	360-362	0.4
XVII	L -Tyr- N_2H_3	Α	73	310-312	0.6
XVIII	L-Ser-N ₂ H ₃	Α	70	220-222	0.9
XIX	L -Val- N_2H_3	В	73	314-316	0.94
XX	L-Leu-N ₂ H ₃	В	77	265-267	0.89
XXI	L -Phe- N_2H_3	В	72	250252	0.32
XXII	$L-Tyr-N_2H_3$	В	75	276-278	0.84
XXIII	L-Ala-L-Val-OMe	Α	38	165–167	0,70
XXIV	L-Val-L-Tyr-OMe	Α	35	295-297	0
XXV	L-Leu-L-Tyr-OMe	A	40	231-233	
XXVI	L-Phe-L-Leu-OMe	Α	50	280-282	0.67
XXVII	L-Tyr-L-Ala-OMe	Α	33	251-253	0.92
XXVIII	L-Ser-L-Tyr-OMe	Α	65	308-310	0.72
XXIX	L-Val-L-Tyr-OMe	В	50	292–294	0.74
XXX	L-Leu-L-Tyr-OMe	В	40	245-247	0.85
XXXI	L-Phe-L-Tyr-OMe	В	43	248-250	0.86

L-Tyr-L-Tyr-OMe

XXXII

..3- KETO- 4: 5-BENZOINDANE-1-CARBONLAMINO ACID

			E	lemental	analysis	%	
$[c]_{ m D}^{20}$	Molecular formula	(Calculate	ed		Found	
		C	Н	N	С	Н	N
59.1	C ₁₆ H ₁₉ NO ₄	66.44	6.57	4.84	66.53	6.62	4.91
63.5	$C_{18}H_{23}NO_4$	68.14	7.26	4.42	68.10	7.30	4.45
69.1	$C_{19}H_{25}NO_4$	68.88	7.55	4.23	68.93	7.60	4.30
67.1	$C_{22}H_{23}NO_4$	72.33	6.30	3.84	72.41	6.35	3.90
73.5	$C_{22}H_{23}NO_5$	69.29	6.04	3.67	69.33	6.09	3.72
63.2	$C_{18}H_{17}NO_5$	66.05	5.20	4.28	66.12	5.31	4.40
70.4	$C_{20}H_{21}NO_4$	70.80	6.19	4.13	70.84	6.20	4.15
75.5	$C_{21}H_{23}NO_4$	71.39	6.52	3.97	71.52	6.66	4.01
79.1	$C_{24}H_{21}NO_4$	74.42	5.43	3.62	74.51	5.54	3.67
63.5	$C_{24}H_{21}NO_5$	71.46	5.21	3.47	71.53	5.26	3.48
65.3	$C_{15}H_{19}N_3O_3$	62.28	6.57	14.53	62.33	6.61	14.62
69.5	$C_{17}H_{23}N_3O_3$	64.35	7.26	13.25	64.41	7.30	13.31
74	$C_{18}H_{25}N_3O_3$	65.26	7.55	12.69	65.33	7.59	12.73
·72	$C_{21}H_{23}N_3O_3$	69.04	6.30	11.51	69.07	6.37	11.57
·81 . 4	$C_{21}H_{23}N_3O_4$	66.14	6.04	11.02	66.22	6.09	11.06
-69.1	$C_{17}H_{17}N_3O_4$	62.39	5.20	12.84	62.45	5.34	12.97
-73.1	$C_{19}H_{21}N_3O_3$	67.25	6.19	12.39	67.35	6.25	12.45
-81.4	$C_{20}H_{23}N_3O_3$	67.99	6.52	11.90	68.03	6.62	11.92
-84.7	$C_{23}H_{21}N_3O_3$	71.32	5.43	10.85	71.41	5.52	10.91
-85	$C_{23}H_{21}N_3O_4$	68.49	5.21	10.42	68.71	5.41	10.39
-73.4	$C_{21}H_{28}N_2O_5$	64.95	7.22	7.22	65.03	7.30	7.25
- <i>7</i> 7	$C_{27}H_{32}N_2O_6$	67.50	6.67	5.83	67.59	6.73	5.90
-83.8	$C_{28}H_{34}N_2O_6$	68.02	6.88	5.67	68.07	6.93	5.72
-74.5	$C_{28}H_{34}N_2O_5$	70.29	7.11	5.86	70.31	7.15	5.91
-80.4	$C_{25}H_{28}N_2O_6$	66.37	6.19	6.19	66.41	6.22	6.25
- 69.2	$C_{27}H_{26}N_2O_7$	66.12	5.31	5.71	66.16	5.45	5.83
-77	$C_{29}H_{30}N_2O_6\\$	69.32	5.98	5.58	69.41	5.03	5.70
-83	$C_{30}H_{32}N_2O_6\\$	69.77	6.20	5.43	69.85	6.41	5.49
-89.5	$C_{33}H_{30}N_2O_6$	72.00	5.45	5.09	72.31	5.61	5.11
-74.5	$C_{33}H_{30}N_2O_7$	69.96	5.30	4.95	70.02	5.41	5.03

ANTIMICROBIAL ACTIVITY (A)* AND MINIMUM INHIBITORY CONCENTRATION (MIC) CALCULATED TABLE 2

AS µg/mL OF 3-KETO-4: 7-DIMETHYL- OR 3-KETO-4: 5-BENZOINDANE-1-CARBONYLAMINO ACID DERIVATIVES

					ACID L	ACID DENIVATIVES	7 E2					
Comp. Bacillus subtilis	Bacillus	subtilis	1	Staphylococcus aureus	Sarcin	Sarcina lutea	Esch	Escherichia coli	Pseude aerug	Pseudomonas aeruginosa	Penic chrys	Penicillium chrysogenum
.001	A	M.I.C.	A	M.I.C.	A	M.I.C.	A	M.I.C.	A	M.I.C.	A	M.I.C.
>	+	250	1		+	250	+	250	+	250		
VII	++	125	1	1	++	125	+	250	+	250		1
VIII	+	250	1	I	++	125	++	125	١			1
×	+	250	-	-	++	125	++	125		-	1	j
XVIII	+ + +	09	++	125	++	125	l	١	ı	1	1	
XIX	++	125	+ + +	09	+++	09	-	1	1	l	İ	I
XX	+	250	I	1	1	1	•	1	ı	i	-	
XXI		1	ı	1		١	ì	1	+	250	ı	i
XXVIII	+	250	+	250	+	250	l	I	1	l	+	250
XIXX As	I	1	1	1	ı	1	I	1	-	1	+	250
IIXXX ian .	l	-	l	1	++	125	l	1	ı	1	++	125
,												

Asian J. Chem.

(A)*: +++= high active; ++= moderately active; += slightly active; -= inactive.

General Procedure for the Synthesis of 3-Keto-4:7-Dimethyl or 3-Keto-4:5-Benzoindane-1-Carbonylamino Acid Methyl Esters (III-XII)

To a solution of amino acid methyl ester hydrochloride (0.01 mole) in THF (50 ml) was added Et₃N (1 ml). The solution was stirred for 25 min at 5°C and the precipitated triethylamine hydrochloride was filtered off. To the filtrate at -5°C were added 3-keto-4:7-dimethyl- or 3-keto-4:5-benzoindane-1-carboxylic acid (I and II, 0.01 mole) and dicyclohexyl-carbodiimide (2.06 g, 0.01 mole). The reaction mixture was stirred for 3 hrs at 0°C and left for 24 hrs at room temperature. The precipitated dicyclohexylurea was filtered off and the solvent evaporated in vacuo. The residue was recrystallized from ethanol/water or ethanol/ether (1:1) mixture. The products (III-XII) were soluble in alcohols, DMF, DMSO, dioxane and insoluble in water and ether. Compounds (III-XII) were homogeneous on TLC when developed with benzidine or iodine solution and all gave negative test with ninhydrin.

The IR spectra of compounds (III–XII) showed characteristic bands at 3370 (CONH); 1750, 1720 (C=O); 1750; 1340, 1260 (COOCH₃) and other bands characteristic of indane and amino acid residues. The UV spectrum of compounds (VIII) showed λ_{max} (log ϵ) at 246 (3.72) and 284 (3.86). The ¹H-NMR spectra of compounds (III–XII) has characteristic chemical shifts at δ : 6.65 (s, 1H, NH); 3.68 (s, 3H, COOCH₃), 3.20 (s, 1H, CH), 7.20 (s, 2H, aromatic protons, for compounds (III–VIII) and six aromatic protons in the range 7.40–7.75 for compounds (IX–XII).

General Procedure for the Synthesis of 3-Keto-4:7-Dimethyl- or 3-Keto-4:5-Benzoindane-1-Carbonylamino Acid Hydrazides (XIII-XXII)

A solution of the methyl ester (III-XII, 0.01 mole) in ethanol (50 ml) and 1M alcoholic hydrazine hydrate (10 ml) was stirred for 1 hr at room temperature and the reaction mixture set aside in a refrigerator for 24 hrs. The crystalline hydrazide was filtered and recrystallized from ethanol. The hydrazides (XIII-XXII) were TLC homogeneous when developed with iodine solution, benzidine and silver nitrate reactions.

The IR spectra of compounds (XIII-XXII) showed characteristic bands at 3430, 3380, 3080 (NH₂, NH, CONH) 1750, 1720 (C=O); 1650, 1550, 1360 (amide I, II and III) and 2920, 2860, 1510, 1260, 1070, 960, 870 characteristic of indane and amino acid moieties.

General Procedure for the Synthesis of 3-Keto-4:7-Dimethyl or 3-Keto-4:5-Benzoindane-1-Carbonyldipeptide Methyl Esters (XXIII-XXXII)

The amino acid hydrazide (XIII-XXII, 0.001 mole) was dissolved in a mixture of acetic acid (3 ml), 5N-HCl (2 ml) and water (25 ml) and cooled to -5° C. Sodium nitrite (0 32 g) in water (3 ml) was added and

the mixture stirred for 10 min at -5° C. The azide was extracted with ethyl acetate (30 ml) and the extract washed successively with water, sodium bicarbonate (3%), and water and dried (Na₂SO₄). The dipeptides (XXIII-XXXII) were prepared by the addition of ethyl acetate solution of the corresponding azide to a cooled (-5° C) solution of the free amino acid methyl ester (prepared from 0.001 mole of the amino acid methyl ester hydrochloride and 0.5 ml triethylamine) and stirring of the reaction mixture for 6 hrs at 0°C and keeping it for 24 hrs at 0°C and for another 25 hrs at room temperature. It was washed successively with HCl (0.5 N), water, sodium bicarbonate (3%) and water and dried (Na₂SO₄). The solvent was removed and the residual material was recrystallized from ethanol/water (1:1) mixture. The products (XXIII-XXXII) were TLC homogeneous when developed with chlorosulphonic-acetic acid mixture (1:3) and gave ninhydrin negative reaction.

The ¹H-NMR of compounds (XXIII-XXXII) showed signals at δ: 6.64 (s, 1H, NH); 3.71 (s, 3H, COOCH₃); 3.21 (s, 1H, CH), 2.32 (s, 3H, Ar-CH₃ for compounds XXIV-XXVIII); 7.17 (s, aromatic protons for compounds XXIV-XXVIII) and aromatic protons in the range 7.38-7.72 for compounds (XXIX-XXII).

REFERENCES

- 1. P. Peynaud, Bull. Soc. Chim. Fr., 718 (1957).
- 2. S. Totsuka and H. Hitomi. J. Pharm. Soc. Japan, 73, 334 (1953).
- 3. A. L. Levy, J. Chem. Soc., 2419 (1951).
- A. M. El-Naggar, I. M. Ismail and A. M. Gommaa, *Indian J. Chem.*, 15B, 850 (1977).
- A. M. El-Naggar, F. S. Ahmed, A.M. Abd El-Salam and M. S. Latif, J. Heterocyclic. Chem., 18, 1203 (1981).
- 6. J. H. Carlson, J. Bacteriol., 55, 607 (1948).
- 7. J. A. Epstein, Lab. Clin. Med., 29, 319 (1944).
- 8. G. Baddeley, G. Holt and S. M. Makar, J. Chem. Soc., 3289 (1952).
- 9. G. Baddeley, G. Holt, S. M. Makar and M. G. Ivinson, J. Chem. Soc., 3605 (1952).

[Received: 15 May 1991; Accepted: 15 June 1991] AJC-321