NOTE

Potentiometric Determination of Stability Constants of Rare-Earth Chelates of 1-phenyl-1-hydroxy-3-phenyl-2-thiourea

V. K. SWAMI*, S. P. MATHUR and R. P. TYAGI†

Research Laborotories, Department of Chemistry Government College, Ajmer-305 001, India

Stability constants of the complexes of La(III), Pr(III), Nd(III), Sm(III), Dy(III), Tb(III) and Ho(III) with 1-phenyl-1-hydroxy-3-phenyl-2-thiourea (PHPT) have been determined potentiometrically in 65% (v/v) aqueous dioxane medium. The method of Bjerrum and Calvin, as modified by Irving and Rossotti has been used to find out the values of ñ and pL. The order of the stability constants was found to be:

Ho > Dy > Tb > Sm > Nd > Pr > La

In the present note, chelating ability of 1-phenyl-1-hydroxy-3-phenyl-2-thiourea (PHPT) towards some rare-earth ions have been studied potentiometrically at 0.2 M ionic strength keeping temperature constant at 30°C.

The ligand (PHPT) has been prepared by reported method². PHPT solution was prepared in freshly distilled dioxane. Solutions of metal perchlorates of La(III), Pr(III), Nd(III), Sm(III), Dy(III), Tb(III) and Ho(III) were prepared from their corresponding oxides (99% Johnson Mathey) and were standardised by conventional methods. Tetramethyl ammonium hydroxide (E. Merck) in 65% aqueous dioxane was used as titrant.

From the titration solutions the values of \tilde{n}_H were calculated at various pH-values. On plotting $\log (\tilde{n}_H/1 - \tilde{n})$ vs pH, straight lines having intercept equal to pK and slope equal to unity were obtained. From the titration curve of solution (i), (ii) and (iii), \tilde{n} values of the metal complexes were determined at various pH values. From pK values and \tilde{n} values at different pH values, the corresponding values of pL were calculated.

The order of stability constant of the rare-earth chelates of PHPT is found to be: Ho > Dy > Tb > Sm > Nd > Pr > La. The stabilities from rare-earth chelates with PHPT show an increase in stability from La(III) to Ho(III) in agreement with increasing acidity. In general, $\log K_1 > \log K_2$ for given metal ion. In fact, the maximum \tilde{n} values observed in present experiment are ≈ 2.0 which support our assumption of 1:2 stiochiometry.

TABLE 1
STABILITY CONSTANTS OF RARE-EARTH CHELATES OF PHPT AT 0.2 M (NaClO₄), TEMPERATURE 30° ± 0.5°C (H⁺ – 10.30)

Stability Constants	La³+	Pr³+	Nd³+	Sm³+	Tb³+	Dy³+	Ho³+
log K1	8.20	8.41	8.55	8.61	8.84	9.20	9.31
log K2	7.60	7.80	8.05	8.14	8.23	8.42	8.61
log β ₂	15.90	16.21	16.60	16.75	17.07	17.62	17.25

REFERENCES

- 1. H. M. Irving and H. S. Rossotti, J. Chem. Soc., 2904 (1954).
- 2. Y. Egwa, K. Umino, Y. Ito, and T. Okuda, J. Antibiot, 24, 124 (1971).

[Received: 20 March 1991; Accepted 20 April 1991]

AJC-872