NOTES

Ultrasonic, Volumetric and Viscometric Studies of Trichloroacetic acid-Nitrobenzene-Ethanol Solutions at Different Temperatures

P. S. NIKAM* AND A. R. HIRAY

P.G. Department of Physical Chemistry
M.S.G. College, Malegaon Camp 432 105, India

Ultrasonic velocity, density and viscosity of trichloroacetic acid (TCAA) solutions in 0, 20, 40, 60, 80 and 100 wt% ethanol-nitrobenzene have been determined at 298.15, 303.15, 308.15 and 313.15 K. The viscosity B coefficient, limiting partial molar volume (\overline{V}_{2}) and limiting apparent molar compressibility (ϕ_{k} °) throw light on the type of solute-solvent interaction in solution.

Measurement of viscosities, apparent molar volumes and ultrasonic velocities in solutions provide an excellent method of obtaining data on solute-solute and solute-solvent interactions. These interactions have been studied in aqueous and nonaqueous solutions by many workers, but such investigations in mixed solvents are scanty. Whenever studies in mixed solvents are reported attention has never been given to the mutual interactions of the solvent molecules¹. Ultrasonic velocity measurements through nitrobenzene-ethanol mixtures at various temperatures showed that addition of nitrobenzene (non-associated) to strongly associated ethanol, dissociated alcohol molecules², forming clusters of varying compositions and sizes which are present in the critical solution region³. No attempt has been made to study the effect of the addition of electrolyte on inter-molecular interaction leading to hydrogen bond formation between nitrobenzene and ethanol molecules. In order to investigate the effect of addition of chloroacetic acids⁴⁻⁶ on the structure of ethanolnitrobenzene, ultrasonic, volumetric and viscometric studies of trichloroacetic acid solutions in ethanol-nitrobenzene have been undertaken at different temperatures.

Trichloroacetic acid⁷, ethanol⁸ and nitrobenzene⁹ were purified by standard methods. Solutions of different molarities were prepared by dissolving accurately known weight of the acid in 0, 20, 40, 60, 80 and 100 wt% ethanol mixtures.

Ultrasonic velocity, viscosity and density of these solutions have been measured in a thermostated water bath having thermal stability of $\pm 0.01^{\circ}$ C, using M-82 interferometer having frequency of 3.5 MHz, Ostwald viscometer and bicapillary pycnometer with an accuracy of 0.03%, ± 0.0003 Cp and ± 0.0001 g/ml respectively. The efflux times were measured with a stop watch correct to 0.01 second.

The variation of relative viscosity (η_r) in the concentration range studied is analysed with the help of equation (1).

$$\eta_{\rm r} = 1 + BC, 0.002M < C < ca. 0.1M$$
 (1)

The values of viscosity B coefficients obtained from slopes of the plots of η_r versus C are given in Table 1. The negative values of dB/dT in solutions in 0, 20, 40 and 60 wt% ethanol and positive values of dB/dT for solutions in 80 and 100 wt% ethanol suggest structure-promoting and structure-breaking effects of TCAA respectively¹⁰.

TABLE 1
B COEFFICIENTS OF TRICHLORO-ACETIC
ACID AT DIFFERENT TEMPERATURES

wt% Ethanol	B coefficient				
	298.15 K	303.15 K	308.15 K	313.15 K	
0	0.155	0.146	0.145	0.135	
20	0.246	0.229	0.215	0.186	
40	0.209	0.205	0.204	0.197	
60	0.280	0.263	0.249	0.243	
80	0.237	0.239	0.240	0.243	
100	0.217	0.218	0.222	0.223	

The apparent molar volume (ϕ_v) was calculated from density data¹¹. The limiting apparent molar volume (ϕ_v^0) which are also equal to partial molar volume (\bar{V}_2^0) at infinite dilution are obtained from linear plots of ϕ_v versus C and are listed in Table 2. The negative values of $d(\phi_v^0)dT$ in solutions in 0, 20 and 40 wt% ethanol and positive values of $d(\phi_v^0)/dT$ in 60, 80 and 100 wt% ethanol indicate the structure-promoting and structure-breaking effect of TCAA respectively.

The apparent molar compressibility (ϕ_k) obeys Gucker's limiting law¹². The apparent molar compressibilities at infinite dilution (ϕ_k^0) are obtained as intercepts of linear plots of ϕ_k versus $C^{1/2}$ and are listed in Table 2. The positive values of ϕ_k^0 in solutions in 0 and 20 wt% ethanol and negative values of ϕ_k^0 in 40, 60 and 100 wt% ethanol suggest structure-promoting and structure-breaking effects of TCAA respectively. Negative ϕ_k^0 values can be explained on Frank and Wen model¹³ for the interaction of ions with solvent molecules.

ACKNOWLEDGEMENT

Authors gratefully acknowledge Principal S. S. Patil for providing laboratory facilities.

TABLE 2

LIMITING PARTIAL MOLAR VOLUMES AND
LIMITING APPARENT MOLAR COMPRESSIBILITIES AT DIFFERENT TEMPERATURES

wt% Ethanol	$\phi_{\mathrm{v}^0} = \overline{\mathrm{V}}_{\mathrm{2}^0} \; (\mathrm{cm^3 \; mol^{-1}})$				
	298.15 K	303.15 K	308.15 K	313.15 K	
0	90.00	89.45	86.20	84.10	
20	93.33	91.67	90.33	90.00	
40	91.70	88.20	86.00	84.50	
60	88.40	88,60	88.67	88.70	
80	93.48	93.80	94.00	95.60	
100	64.50	68.50	73.09	75.25	
	$\phi_{\mathbf{k}^0} \times 1$	0° (cm² dyr	ne-1)		
0	20.6	11.2	7.8	5.5	
20	24.9	28.6	32.7	16.4	
40	-36.8	-22.3	-35.5	-28.1	
60	-65.0	-43.9	-67.8	-58.4	
80	-2.7	-1.9	-1.6	3.9	
100	-28.9	-6.5	-5.0	5.2	

REFERENCES

- 1. R. H. Stokes and R. Mills, The Viscosity of Electrolytes, Pergamon Press, Oxford (1965).
- G. Italo and P. Gianni, 'Koninkl Vlaam acad wetenschap letter', Schone Kunsten Belgie Colloquium Ultrasonore, Trillingen, Brussels, p. 234 (1951).
- 3. D. Sette, J. Chem. Phys., 21, 558 (1953).
- 4. P. S. Nikam and A. R. Hiray, Indian J. Pure Appl. Phys., 26, 37 (1988).
- 5. ____, J. Indian Chem. Soc., 66, 883 (1989).
- 6. —, Indian J. Pure Appl. Phys. (in press).
- 7. W. S. Layne, H. H. Jaffe and H. Zimmer, J. Am. Chem. Soc., 85, 435 (1963).
- 8. D. P. Shoemaker, C. W. Garland and J. Steinfeid, Experiments in Physical Chemistry, McGraw-Hill, New York, p. 669 (1974).
- 9. M. Katsuhiko and T. Toshihiro, J. Phys. Chem. (USA), 77, 519 (1973).
- 10. T. S. Sharma and J. C. Ahluwalia, Rev. Chem. Soc. (GB), 2, 217 (1973).
- 11. F. J. Millero, J. Phys. Chem., 25, 327 (1971).
- 12. P. S. Nikam and Mehdi Hasan, J. Chem. Eng. Data, 33, 165 (1988).
- 13. H. S. Frank and W. Y. Wen, Disc. Faraday Soc., 24, 133 (1957).