NOTES

Estimation of Densities of some Polymers Based on Bisphenol-A

A. VARADA RAJULU

Polymer Physics Laboratories Sri Krishnadevaraya University Anantapur-515 003, India

The densities and the volume expansion coefficients of some polymers based on bisphenol-A have been estimated by group counting method. A close agreement between the estimated and experimental values has been observed.

Barbari et al¹. have reported the densities for films of a series of polymers based on bisphenol-A viz., polycarbonate, polysulfone, polyarylate, polyetherimide and polyhydroxyether using density gradient column method at 35°C. In the present work, the author has estimated theoretically the densities of these polymers using empirical formulae based on group counting model² and compared them with the experimental values of Barbari et al.¹

The density d of a polymer can be calculated² as:

$$d = (K_{av}M/N_A \Sigma \Delta v_i)$$
 (1)

where K_{av} is the packing factor of polymers whose value is 0.68 when the polymer is taken in the bulk form and 0.695 when it is taken in the form of a film, M is the molecular weight of the repeating unit, $\Sigma \Delta v_i$ is the total van der Waals' volume of the repeating unit of the polymer and N_A is the Avogadro number.

Kitaigorodskj³ has given the van der Waals' volumes of individual atoms in different environments. Using these values in Eq. (1), the densities of polymers² at a 15°C have been calculated. But barbari et al¹. have reported the experimental density values at 35°C. In order to convert the density estimated at 15°C to the values at 35°C, the following relation is made use of:

$$d_{T_1} = d_{T_2} [1 + \gamma (T_2 - T_1)]$$
 (2)

where d_{T_1} and d_{T_2} are the densities at the temperatures T_1 and T_2 respectively and γ is the volume thermal expansion coefficient of the polymer. As the γ values for these polymers are not available, the author has estimated these values also using the formula of Askadskii *et al.*⁴:

$$\gamma = [(\Sigma \gamma_i \Delta \nu_i + \Sigma \beta_i) / \Sigma \Delta \nu_i]$$
 (3)

where γ_i is the partial thermal expansion coefficient of individual atoms in the repeating unit and β_i is the parameter characterizing strong intermolecular interactions in the polymer.

The chemical structures of the polymers based on bisphenol-A are available elsewhere¹. The densities of these polymers have been estimated at 15°C and 35°C using Eqs. (1) and (2) respectively. The values have been estimated using Eq. (3). The values of Δv_i , γ_i and β_i have been taken from the literature²⁻⁴. The estimated d values at 35°C have been compared with the experimental values of Barbari et al.¹ These values are presented in Table 1. A close agreement between the estimated and experimental values has been observed (the average per cent deviation being 1.8) thus validitating Eqns. (1) and (2).

TABLE 1
ESTIMATED AND EXPERIMENTAL DENSITIES OF POLYMERS BASED ON
BISPHENOL-A AT 15°C (d₁₅) and 35°C (d₃₅) AND THEIR VOLUME EXPANSION
COEFFICIENTS (Y)

Polymer	d ₁₅ g/∞	γ(10 ⁻⁴ K ⁻¹)	d ₃₅ g/cc (Est.)	d ₃₅ g/cc (Expt.)	% of Deviation
PC	1.227	2.69	1.221	1.200	1.7
PSF	1.278	2.42	1.271	1.240	2.5
PA	1.242	2.35	1.236	1.210	2.1
PE_i	1.310	1.92	1.304	1.280	1.9
PH	1.175	3.51	1.167	1.180	1.1

REFERENCES

- 1. T.A. Barbari, W.J. Koros and D.A. Paul, J. Polym. Sci. Polym. Phys. Ed., 26, 709 (1988).
- A.A. Askadskii, in Polymer Year, Book 4 (Ed. R.A. Pethrick), Harwood Academic Publ., London (1987).
- 3. A.I. Kitaigorodski, Organic Crystallochemistry, Academy of Sci. Publ., p. 579 (1955).
- A.A. Askadskii, A.I. Kitaigorodskj and G.L. Slonymskii, Visokomolek. Soedin., Ser. A. (Russ.), 17, 2293 (1975).

(Received: 5 September 1992; Accepted: 27 February 1993) AJC-583