Raman Spectra and Calculations of the Normal Vibrations of Some Organotin Compounds

M. EL-BEHAIRY* and AISHA I. IBRAHIM Chemistry Department, Faculty of Education Ain Shams University, Roxy, Cairo, Egypt.

Low frequency Raman spectra of a series of tin compounds; tetramethyltin Me₄Sn, hexamethyldistannane Me₆Sn₂, bis (trimethylstannyl) dimethyltin (Me₃Sn)₂-SnMe₂, tris (trimethylstannyl) organotin (Me₃Sn)₃ SnR (R = Me, Et, Bu, i–Bu, *n*-pentyl and phenyl) and tetrakis (trimethylstannyl) tin (Me₃Sn)₄Sn, were recorded and assigned in the region 0–600 cm⁻¹. The normal vibrations of these compounds have been calculated and discussed in relation to the observed spectra. It was evident from the data that on going from Me₈Sn₃ \rightarrow Me₁₀Sn₄ \rightarrow Me₁₂Sn₅, the change in the vibration frequencies was very small and no shifts are observed for the C–Sn–Sn-stretching vibrations. On the other hand the symmetric and asymmetric stretching vibrations of Sn–Sn display a systematic decrease in the frequencies, which is in harmony with the calculated data. The decrease in vibration frequencies correlate well with published data of ¹J(Sn–Sn) coupling constant.

INTRODUCTION

The so-called GF-martix method should be used to calculate the normal vibtrations 1 . The calculation was carried out with a special computer-programm 2 . Since the present work is mainly interested in the vibrations including the tin atoms, the CH₃-, C₂H₅-, C₃H₇-, C₄H₉- and C₆H₅- groups in the compounds under investigation are treated as mass points with m = 15.03, 29.06, 43.08, 56.12 and 67.11 respectively. For such calculations the following bond lengths are taken into consideration: Sn-Sn = 2.8, Sn-C = 2.18, C-C = 1.45, C-H = 1.09 Å, with the assumption that all the angles exist at Sn and C atoms are those of the tetrahedron. The stretching and the bending force constants are used without consideration of the interactions. The value of f_{Sn-Sn} = 1.15 mdyn/Å, which was calculated by the help of Siebert's rule 4 , is used for the Sn-Sn stretching force constant or the C-Sn-C-, Sn-Sn-C- and Sn-Sn-Sn bending force constants 5 , the values 2.2 mydn/Å, 0.28, 0.2 and 0.15 mydn Å/radian 2 , respectively, were applied.

RESULTS AND DISCUSSION

Tetramethyltin (Me_4Sn): The Raman spectrum of Me_4Sn shows strong band at 150 cm⁻¹, which is assigned to the bending vibration of the C-Sn-C. The

symmetric and asymmetric stretching vibrations of the Sn-C bond are observed at 510 and 520 cm⁻¹ (Fig. 1(a)), respectively.

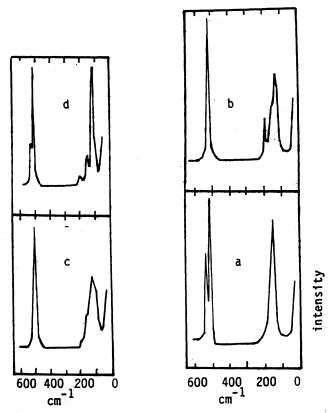


Fig. 1 The recorded Raman spectra of: (a) Me₄Sn, (b) Me₆Sn₂, (Me₃Sn)₂Sn-Me₂ and Me₁₂Sn₅.

Hexamethyldistannane (Me_0Sn_2): The Raman spectrum of Me_0Sn_2 shows the bands at 140 and 510 cm⁻¹, which are assigned to the C-Sn-C bending and Sn-C stretching vibrations. In addition the spectrum shows Raman bands at 125 and 190 cm⁻¹; which are not observed in the spectrum of tetramethyltin hence can be assigned to the C-Sn-Sn bending and the Sn-Sn-stretching vibrations (Fig. 1(b)). Brown⁶ has given a similar assignment for the same compound. Spiro⁷ postulated for the compound (C_6H_5)₆Sn₂, that the total symmetric vibrations of Sn-Sn would appear at 136-140 cm⁻¹, while Gager's⁸ assigned the band at 207 cm⁻¹ to the symmetric Sn-Sn- vibrations of (C_6H_5)₆Sn₂.

Bis (trimethylstannyl) dimethyltin (Me₃Sn)₂ SnMe₂: Fig. 1(c) shows the Raman spectrum of this compound. The calculated and the observed vibration frequencies and their assignments are given in Table 1, where the observed and the calculated frequencies are in agreement to each other.

TABLE 1
THE OBSEVED AND THE CALCULATED VIBRATION
FREQUENCIES (cm⁻¹) AND THEIR ASSIGNMENTS
OF (Me₃Sn)₂SnMe₂.

Observed	Calculated	Assignement		
110	109	δ C-Sn-Sn		
138	136	δ C-Sn-C		
170	175	v _s Sn-Sn		
200	204	vas Sn-Sn		
513	509	v _s Sn-C		

Tris (trimethylstannyl) organoltin: $(Me_3Sn)_3Sn-R$ (R = Me, Et, Bu, i-Bu, n-pentyl and phenyl). The Raman spectra of these compounds are recorded in the pure liquid state. These compounds as expected, would yield spectra that are similar to each other, which donate that the alkyl (aryl) group had a small influence on the normal vibrations, and hence, no much change would appear in the vibration frequencies. Table 2 contains the observed and the calculated frequencies and their assignments whereas Fig. 2 shows the recorded spectra.

 $\label{eq:table 2} THE\ OBSERVED\ AND\ THE\ CALCULATED\ VIBRATION\ FREQUENCIES\ (in\ cm^{-1}) \\ AND\ THEIR\ ASSIGNMENTS\ OF\ (Me_3Sn)_3Sn-R.$

assignments	R = phenyl		R = n pentyl		R = i Bu		R = n Bu		R = Et		R = Me	
assignments	calc.	obs.	calc.	obs.	calc.	obs.	calc.	obs.	calc.	obs.	calc.	obs.
δ C-Sn-Sn	_	_	115	112	115	112	115	113	118	112	118	112
δ C-Sn-C	142	139	140	139	140	140	140	141	138	140	135	138
v _s Sn-Sn	169	165	168	162	168	161	168	161	168	162	166	161
v _{as} Sn-Sn	209	202	207	200	209	200	208	207	207	198	205	200
v _s Sn-C	513	508	508	512	507	511	507	513	509	511	510	511
vas Sn-C	533	525	532	524	531	522	531	523	523	524	530	423

Tetrakis (trimethylstannyl) tin $(Me_3Sn)_4Sn$: The Raman spectrum of the high symmetric compound was recorded in cyclohexane solution (0.25 mole/l). Fig. 1d shows the recorded spectrum while the observed and the calculated frequencies with their assignment are collected in Table 3, where the observed and the calculated frequencies are in agreement to each other. These results contradict with the postulated assignments previously made by some authors^{7,8} on the compound $(C_6H_5)_3Sn_4Sn$.

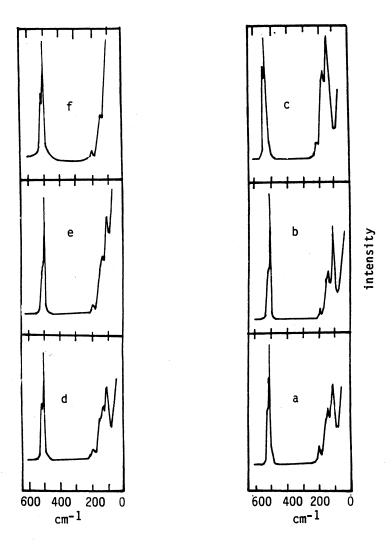


Fig. 2 The recorded Raman spectra of $(Me_3Sn)_3Sn-R$. (a) R = Me, (b) R = Et, (c) R = n Bu, (d) R = i Bu, (e) R = n Pentyl and (f) R = Pentyl

The characteristic vibration frequencies of this series of tin compounds are collected in Table-4, from this Table it is observed, that the change in the vibration frequencies is very small by the passage from $Me_8Sn_3 \rightarrow Me_{10}Sn_4$ to $Me_{12}Sn_5$. For the C-Sn-Sn- bending vibrations and Sn-C-stretching vibrations, there is no change, which is in harmony with the previous published data of $^1J(Sn^{119}-C_1)$ coupling constants 10 , while the symmetric and asymmetric stretching vibrations of Sn-Sn-, decreased in a systematic manner. This results is correlated in a very

good way with the decreased ¹J(Sn¹¹⁹-Sn¹¹⁹) coupling constants in these compounds¹⁰. It is observed in the same trend that there is a very small increase appear in the C-Sn-C bending vibrations. The vibration forms of the high symmetric molecule Me¹²Sn₅ (T_d symmetry) can be depicted diagramatically, which represent the Sn-Sn- stretching, C-Sn-C- and C-Sn-Sn- deformation vibrations. These calculations were carried out by the aid of a computer-programme⁹.

TABLE 3
THE OBSERVED AND THE CALCULATED VIBRATION
FREQUENCIES AND THEIR ASSIGNMENTS (cm⁻¹) OF (Me₃Sn)₄Sn.

observed*	calculated*	assignment		
111	102	δ C-Sn-Sn		
142	140	δ C-Sn-C		
159	157	v_s Sn-Sn		
198	204	v_{as} Sn–Sn		
508	505	v_s Sn-C		
521	530	v_{as} Sn–C		

TABLE 4
THE CHARACTERISTIC VIBRATION FREQUENCIES cm⁻¹,
AND THE COUPLING CONSTANTS IN Hz. OF THE
INVESTIGATED COMPOUNDS

Compounds	ð (C-Sn-Sn)	δ (C-Sn-C)	v _s (Sn–Sn)	v ₂₅ (Sn-Sn)	v _s (Sn–C)	v _{as} (Sn-C)	¹ J (¹¹⁹ Sn- ¹¹⁹ Sn)a
Me ₄ Sn		150			510	520	
Me_6Sn_2	125	140	190	*	510	_*	4404
Me ₈ Sn ₃	110	136	175	204	509	_*	2873
$Me_{10}Sn_4$	112	136	161	200	511	523	1733
Me ₁₂ Sn ₅	111	142	160	198	508	521	876

^{*}not observed due to band overlap: a Data from ref. 10.

EXPERIMENTAL

The organotin compounds were prepared as reported previously¹⁰ and their purity was established by elemental analysis. Raman spectra were recorded at

room temperature using the T800 Coderg and an Argon-ions Laser Model 171 Spektra Physics.

ACKNOWLEDGEMENTS

The authors wish to thanks Prof. Dr. T.N. Mitchell and Dr. M. Soliman for helpful discussions and for providing facilities to record the spectra.

REFERENCES

- 1. J. Decius and E.B. Wilson, Molecular Vibrations, The Theory of Infrared and Raman Vibrational Spectra, McGraw-Hill, New York (1955).
- P. Bleckmann, B. Shrader, W.M. Meier and H. Takahashi, Ber. Bunsenges. Physik. Chem., 75, 1279 (1971).
- International Tables for X-Rays Crystallography, Vol. III, The Kynoch Press, Birmingham (England) (1968).
- H. Siebert, Anwendung der Schwingungsspektroskopie in der Anorganishe Chemie, Springer-Verlag, Berlin (1966).
- 5. M. Soliman, Ph.D. Thesis, University of Dortmund (West Germany) (1979).
- 6. M.P. Brown, E. Cartmall and G.W.A. Fowles, J. Chem. Soc., 506 (1960).
- 7. P.A. Bulliner, C.O. Quicksall and T.G. Spiro, Inorg. Chem., 10, 13 (1971).
- 8. H.M. Gager, J. Lewis and M. Jware, Chem. Commun., 616 (1966).
- 9. R. Schneider, Ph. D. Thesis, University of Dortmund (West-Germany) (1974).
- T.N. Mitchell, J. Organometal Chem. 121, 177 (1976); 172, 293 (1979); J. Chem. Soc. Perkin Trans. II, 1842 (1977).

(Received: 12 August 1992; Accepted: 20 February 1993) AJC-569