NOTES

The Mass Spectra of Some of Substituted Tetrahydroquinoxaline Compounds

R.C. RASTOGI*, N. BORTHAKUR AND R.H. KHAN

Regional Research Laboratory

Jorhat-785 006. India

In the present notes, the authors have described the electron impact mass spectra of the N-substituted tetrahydroquinoxaline compounds.

The mass spectra of some heterocyclic compounds containing two nitrogen atoms have been reported^{1,2} but little has appeared concerning quinoxaline compounds. Lately the mass spectra of some quinoxaline derivatives have been reported³⁻⁵ but no detailed record of the mass spectral fragmentation of this useful

- 1. R=CH2COOCH3
- 2. R=CH₂COOH
- 3. R=CH₃

- 4. R=CH2COOCH3
- 5. R=CH2COOH
- 6. R=CH₃

class of compounds has been reported so far. In present communication we have investigated the electron impact mass spectra of the N-substituted derivative of 2-oxo (1-3) and 2,3-dioxotetrahydroquinoxaline (4-6). All compounds display an intense molecular ion signal. The fragmentation pattern of all the oxo compounds is almost identical and it is true in case of dioxo compounds. A notable feature in the spectrum is the observation of peal; at m/e 149 (62.50) which appear to have resulted from m/e 176 by the loss of HCN. This feature is common to other dioxoquinoxaline derivatives which has not been observed in mono-oxoquinoxaline derivatives. The relative abundance of some of the significant ions in mass spectra of these compounds is given in Table 1.

70-eV EI MASS SPECTRA OF COMPOUNDS 1-6						
Type of ion	1	2	3	4	5	6
[M] ⁺	220(82.50)	206(68.55)	162(100)	234(85)	220(25)	176(100)
a	191(46.89)	176(62.89)	148(42)	206(68.00)	176(34)	160(29)
b	161(100)	161(65.40)	147(43)	202(61.70)	161(82.95)	148(84.21)
c	146(65.07)	146(95.59)	146(49)	175(63.82)	149(62.50)	147(84.21)
d	133(90.81)	134(67.29)	133(90.47)	162(61.70)	147(64.77)	134(77.63)
e	119(65.62)	133(67.29)	119(52.53)	147(97.87)	146(73.86)	130(71.05)
f	118(61.25)	131(100)	118(55.05)	134(56.73)	135(76.13)	118(88.15)
g	92(51.25)	118(81.76)	105(37.14)	119(100)	133(100)	104(60.52)
h	91(58.87)	104(38.36)	104(36.00)	104(47.87)	119(67.04)	93(76.31)
i	77(49.37)	91(58.49)	92(60.47)	92(65.24)	105(59.09)	69(97.36)
j	65(65.62)	77(56.60)	65(52.85)	77(73.75)	91(68.18)	64(93.42)
-	-	65(76.10)	-	64(73.04)	64(98.86)	-
Base peak	161ª	131 ^b	169 ^c	119 ^d	135 ^e	176 ^f

TABLE 1

RELATIVE ABUNDANCE (% BASE PEAK) OF IMPORTANT FRAGMENT IN THE

70-eV FL MASS SPECTRA OF COMPOUNDS 1-6

Mass spectra were recorded on an AEI-MS-30 instrument equipped with a direct ionizing voltage inlet system at 70 CV, on ion source temperature of 250° at 1 to 2×10^{-6} torr. Compounds 1-6 have been synthesized previously.

 $^{c}[C_{9}H_{10}N_{2}O]^{+}$

 $^{d}[C_{7}H_{7}N_{2}]^{+}$

e[C1H5N2O]+

REFERENCES

- 1. S.N. Bannore, J.L. Bose, K.G. Das and V.N. Gogte, *Indian J. Chem.*, 7, 654 (1969).
- 2. G.N. Porter and J. Baldas, Mass Spectrometry of Heterocyclic Compounds, Wiley Interscience, p. 497 (1970).
- A. Karjalainen and H. Kreiger, Soum Kemistilethi, B43, 273 (1970); Chem. Abstr., 73 (1970), 114332x.
- 4. P. Vouros and K. Biemann, Org. Mass Spec., 2, 375 (1969).

^b[C₈H₇N₂]⁺

^a[C₀H₀N₂O]⁺

^f[C₀H₆N₂O₂]⁺

 M. Spiteller, U. Langenbeck, H.U. Moehring and B. Hinney, *Biomed-Mass Spectrum*, 4, 197 (1977); *Chem. Abstr.*, 88, 120140j (1978).

(Received: 1 October 1992; Accepted: 21 October 1992) AJC-526