Physicochemical Investigation on Lanthanon(III) Chelates of Multidentates Possessing N, O, O Donors

A. SHARMA, L. JAIN, S. SHARMA, G. R. KACCHWAH, S. JANGID AND R. K. MEHTA*

> Department of Chemistry, University of Jodhpur Jodhpur-342 001, India

The dissociation constants of O-(N-O-hydroxy benzophenimino) benzoic acid (H_2BB) and O-(N-O-hydroxy benzo-phenimino) propanoic acid (H_2BP) and thermodynamic stability constants of their chelates with La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III). Dy(III) Ho(III) and Er(III) were determined by Calvin-Bjerrum pH titration technique as modified by Irving. Rossotti method in 30% (v/v) dioxanewater media ($\mu = 0.01$ N. 0.05 M and 0.1 M NaClO₄). The solid Ln(III)-chelates were characterised by physico-chemical techniques and stereochemistry established.

INTRODUCTION

A survey of the literature $^{1-3}$ has indicated that no work has been done on La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Ho(III) and Er(III)-chelates of the polydentate ligands obtained by the condensation of 2-hydroxy benzophenone with anthranilic acid (H₂BB) or β -alanine (H₂BP') hence the same was undertaken and its finding are reported in the present communication.

EXPERIMENTAL

Synthesis of H₂BB and H₂BP'

H₂BB and H₂BP' were synthesised in an inert atmoshere of nitrogen gas by the condensation of 3-hydroxy benzophenone with anthranilic acid or β -alanine in presence of a drop of piperidine. After refluxing equimolar ethanolic solutions of these compounds for 2–3 hrs., the light brown and light yellow solutions obtained were filtered hot, concentrated and cooled when brown (H₂BB) and yellow (H₂BP') crystals were obtained. These were recrystalized from ethanol. The authenticity and purity of the ligands were established by elemental analysis, molecular mass, electronic, IR and ¹H NMR spectral data. (m. pt. 182°C) Found: C, 75.36; H, 4.41; N, 4.17 calc. for (C₂₀H₁₅NO₃): C, 75.71; H, 4.73; N, 4.41%. H₂BP' (m. pt, 213°C). Found: C, 71.11; H, 5.26; N, 4.91; Calc. for (C₁₆H₁₅NO₃): C, 71.38; H, 5.58; N, 5.20%.

Synthesis of Ln(III) Chelates

In an ethanolic solution of H_2BB or H_2BP' (0.04 M), a solution of lanthanon(III)-nitrates (0.02 M) in 80% ethanol was added gradually and the mixture stirred magnetically. Dilute ammonia (1:20) was added dropwise to the mixture until a flocculent mass was obtained which was stirred continuously for 4-5 hrs. The mass was filtered under suction, washed with hot ethanol, dried and preserved in vacuum desiccator.

The C, H and N were determined microanalytically using Carlo Erba-Strumentazione elemental analyser-MOD 1106 in an inert atmosphere of helium gas, and the metal contents were estimated by standard methods. All the chemicals and solvent used were of AnalaR grade. The physico-chemical measurements were carried out as reported earlier^{4,5}. The potentiometric studies were carried out by Irving-Rossotti method⁶ at 25°, 35° and 45°C in 30% (v/v) dioxane-water media ($\mu = 0.05$, 0.01 M & 0.1 M NaClO₄) and the values were corrected for partially aqueous media⁷.

RESULTS AND DISCUSSION

The pK₁ and pK₂ values of H₂BB were found to be 9.62 and 5.30 at 25°, 9.38 and 4.84 at 35°, 9.15 and 4.62 at 45°C; the corresponding values for H₂BP' were found to be 9.88 and 5.73 at 25°, 9.72 and 5.53 at 35°, 9.33 and 5.18 at 45°C respectively ($\mu = 0.1$ M NaClO₄). These values suggest biprotic nature of the ligands. The pK₁ and pK₂ values of H₂BB and H₂BP' decreased with increasing temperature. By plotting \bar{n} vs pL, the formation curves of metal-ligand systems were obtained. The values of stability constants derived from the formation curves were refined by different computational methods⁸.

The stabilities of the Ln(III)-chelates were found to follow the order: La(III) < Ce(III) < Pr(III) < Nd(III) < Sm(III) < Gd(III) < Tb(III) < Dy(III) < Ho(III) < Er(III) in accordance to the Stagg and Powell rule.

Thermodynamic Parameters

 ΔG° , ΔH° and ΔS° values (Table 1) were evaluated using Gibbs-Helmholtz equation. $\log \beta_0$ values decreased with increase in ionic strength of the medium, in agreement with Huckel equation¹⁰. The stabilities decreased with increase in temperature.

The negative values of ΔH° suggest the exothermic nature of the reaction and positive values of ΔS° suggest favourable chelation reactions. The data were also analysed in terms of Harned's relation¹¹ $[(pK^{H} - Ct^{2}) = -2COt + (pK^{H}_{m} - C\theta^{2})]$ and the values of θ , pK^{H} and

 pK_m^H were evaluated (Table 1). The ΔH values obtained by Harned's equation and Gibbs-Helmholtz equation were found to be in agreement.

Solid Chelates

Based on elemental analysis and ebulliometric molecular weight determination the solid lanthanon chelates approached 1:2 (metalligand) stoichiometry (Table 2).

The room temperature magnetic moment values of the lanthanon chelates correspond to the formula, $\mu_{\rm eff} = 2[J(J+1)]^{1/2}$ and, as shown in Table 2, the magnetic moments suggest the presence of 0, 1, 2, 3, 5, 7, 6, 5, 4, 3 unpaired electrons in La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er complexes, respectively, indicating the tripositive oxidation state of the Ln(III) ions in them. A double humped curve is obtained on plotting $\mu_{\rm eff}$ values versus number of unpaired electrons. However, La(III) chelates were found to be diamagnetic. The $\mu_{\rm eff}$ values also indicated the absence of metal-metal bonding. The high conductance values (270–368 ohm⁻¹ cm² mol⁻¹) obtained indicated the ionic-nature of the metal chelates.

Electronic Spectra

The result of the study is shown in Table 3. The energies at which the various bands appeared were lower as compared to their positions in aquo ions. The shift could be ascribed to a nephelauxetic effect,¹² the extent of which is related to the amount of covalence in the metal-ligand bond. Sinha has proposed a scale for this covalency given by the parameter (Sinha's parameter) as $\delta\%$ = $[(1-\beta)/\beta] \times 100$. The value $(1-\beta)$, being less than unity, in the chelates of both H₂BB and H₂BP', suggests the covalent nature of the metal-ligand bond. The bonding parameter $b^{1/2}$, the magnitude of which suggested the involvement of the 4f-orbital in metal-ligand bond, was correlated to nephelauxetic ratio β by the expression $b^{1/2} = (1-\beta)^{1/2}/2$. Another parameter called covalency angular (η) was also evaluated using the expression, $\eta = (1-\beta^{1/2})/\beta^{1/2}$.

Infra-red Spectra

A comparison of the IR spectra of the ligands H_2BB and H_2BP' with those of their Ln(III)-chelates indicated their coordination through azomethine nitrogen, carboxylic oxygen and phenolic oxygen. In the IR spectra of H_2BB and H_2BP' four major peaks were observed in the ranges 1610-1630, 3270-3300, 1740-1770 and 3350-3380 cm⁻¹ assignable to v>C=N, vOH (phenolic), vC=O & vOH(of carboxylic) modes respectively.

In the Ln(III) chelates of H_2BB and H_2BP' the bands in the range, 3350-3380 cm⁻¹ disappeared suggesting deprotonation of OH (of carboxylic) and its subsequent chelation. ν (> C=N) and ν OH (phenolic) were found to be lowered (ca 15-25 cm⁻¹) indicating coordination of the ligands

THERMODYNAMIC PARAMETERS OF THE LANTHANON(III) CHELATES OF H₂BB AND H₂BP' AT μ =0 TABLE 1

Metal		β gol			-4G° (KJ/mole)	nole)	- 4H° K1/mole	AS° I/K mole
Ion	25°C	35°C	45°C	25°C	35°C	45°C	at 35°C	at 35°C
La(III)	12.52	12.08	11.93	71.44	72.24	72.64	53.53	60.75
	(11.92)	(11.61)	(11.29)	(66.01)	(68.47)	(68.74)	(57.16)	(36 72)
Ce(III)	12.77	12.45	12.15	72.87	73-42	73.98	56.25	55.75
	(12.00)	(11.69)	(11.38)	(68-47)	(68.94)	(69.29)	(56.25)	(41.20)
D=(III)	12.86	12.56	12.17	73.38	74.07	74.10	62.60	37.24
(111)	(12.31)	(12.08)	(11.65)	(70.24)	(71.24)	(70.94)	(59.88)	(36.88)
NACITY	13 22	12.92	12.62	75.43	76.20	76.84	54.44	70.65
(111) 110	(12.50)	(12.20)	(11.90)	(71.33)	(71.95)	(72.45)	(54.44)	(56.85)
Sm(III)	14.00	13.65	13.30	79.89	80.50	80.98	63.50	55.19
	(13.16)	(12.97)	(12.52)	(75.09)	(76.49)	(76.23)	(58.06)	(59.84)
Gd(III)	14.35	13.95	13.68	81.88	82.27	83.30	60.79	69.74
	(13.52)	(13.23)	(12.98)	(77.15)	(78.02)	(79.03)	(48.99)	(94.25)

Asian J. Chem.

TABLE 1. (Contd.)

Metai		log β°		JP —	-4G° (KJ/mole)		-4H°	AS°
ion	25°C	32°C	45°C	25°C	35°C	45°C	at 35°C	at 35°C
Tb(III)	14.62	14.22	13.89	83.42	83.86	84.58	66.23	57.24
	(13.99)	(13.59)	(13.29)	(79.83)	(80.15)	(80.92)	(63·51)	(54.02)
Dy(III)	14.85	14.50	14.20	84.74	85.51	86.46	58.97	86.17
	(14.45)	(14.24)	(13.80)	(82.45)	(83.98)	(84.03)	(58.96)	(81.20)
Ho(III)	15.26	14.92	14.56	87.07	87.99	88.66	83.51	79.48
	(14.60)	(14:35)	(13.93)	(83.31)	(84.63)	(84.82)	(60.79)	(77.40)
Er(III)	15.68	15.38	14.97	89.47	90.70	91.15	64.43	85.35
	(15.04)	(14.74)	(14.33)	(85.82)	(86.93)	(87.25)	(64.42)	(73.08)
)

In terms of Harned's equation, pkH, pK $_{\rm m}^{\rm H}$ and θ at 35° were found to be 14.23 (15.25), 5.1700 (1.0160) and 460 (560.25) respectively. The values given in parentheses are those of the H2BP' chelates.

MOLECULAR WEIGHT, ELEMENTAL ANALYSIS AND MAGNETIC MOMENT OF THE LANTHANON(II) CHELATES OF H₂BB and H₂BP' TABLE 2

	X	Moleculer				Elemental	Elemental analysis %				£ 61
Composition	№	weight	S	Carbon	Hydı	Hydrogen	N.	Nitrogen	M	Metal	B.M.
	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.	at 308 K
(CaHis NOs)	308	317	75.36	75.71	4.49	4.73	4.17	4.41	I	1	1
	(256)	(269)	(71.11)	(71.38)	(5.26)	(5.58)	(4.91)	(5.20)			
H+[La(C40H16N1O6] 762	762	160	65.09	62.42	3.06	3.38	3.30	3.64	17.80	18.65	Dia.
	(99)	(673)	(56.73)	(57.10)	(3.56)	(3.86)	(3.85)	(4.16)	(20.32)	(20.65)	
H+[Ce(C40H26N2O6)] 760	092	770	62.00	62.34	3.01	3.38	3.27	3.64	17.84	18.20	2.26
	(662)	(674)	(56.71)	(26.97)	(3.53)	(3.86)	(3.88)	(4.15)	(20.38)	(20.77)	(2.27)
H+[Pr(C40H26N2O6)] 763	763	771	61.89	62.26	3.07	3.37	3.32	3.63	17.96	18.27	3.37
	(299)	(675)	(56.50)	(56.89)	(3.52)	(3.85)	(3.83)	(4.15)	(20.63)	(20.89)	(3.36)
H+[Nd(C,H16N2O6)] 769	1 769	774	61.65	62.01	3.02	3.36	3.30	3.62	18.27	18.63	3.62
•	(029)	(878)	(56.31)	(56.64)	(3.47)	(3.83)	(3.81)	(4.13)	(20.92)	(21.24)	(3.60)
H+[Sm(C40H36N3O6)] 772	1772	780	61.11	61.54	3.02	3.33	3.19	3.59	18.91	19.27	1.58
مدنو	(672)	(684)	(55.87)	(56.14)	(3.48)	(3.80)	(3.82)	(4.10)	(21.59)	(21.93)	(1.56)
H+[Gd(C40H26N2O6)] 781	1 781	787	69.09	60.09	3.00	3.30	3.28	3.56	19.66	19.98	7.88
Cham-	(089)	(691)	(55.28)	(55.57)	(3.36)	(3.77)	(3.71)	(4.05)	(22.40)	(22.72)	(7.89)

Asian J. Chem.

H+[Tb(C40H26N2O6)] 778			60.84	3.03	3.29	3.24	3.55	19.84	20.14	9.91
9)	(681) (693)		(55.41)	(3.43)	(3.75)	(3.74)	(4.04)	(22.85)	(22.94)	(9.48)
H+[Dy(C40H16N2O6)] 785			19.09	2.94	3.28	3.20	3.53	20.88	20.52	10.42
9)	(969) (589)		(55.17)	(3.46)	(3.74)	(3.68)	(4.02)	(23.00)	(23.28)	(10.43)
H+[Ho(C40H26N2O6] 790	90 795	60.03	60.37	2.94	3.27	3.23	3.52	20.47	28.74	10.39
9)	(669) (989)		(54.94)	(3.45)	(3.72)	(3.72)	(4.00)	(23.27)	(23.60)	(10.42)
H+[Er(C40H26N2O6)] 788			60.22	3.00	3.26	3.25	3.51	20.69	20.99	29.6
59)	(691) (701)		(54.78)	(3.35)	(3.71)	(3.68)	(3.99)	(23.55)	(23.82)	(89.68)

The values given in parentheses are those of H₂BP' (C₁₆H₁₅NO₃) and its [Ln(C₃₂H₂₆N₂O₆)] chelates.

Vol. 5, No. 1 (1993)

TABLE 3

ELECTRONIC SPECTRAL DATA OF LANTHANON(III) CHELATES
OF H₂BB & H₂BP'

Ion	λ_{\max} (cm ⁻¹)	J-levels	β	δ%	b1/2	η
La(III)	31435 (31433)	Infra ligand transition			_	_
Ce(III)		_		-		
Pr(III)	22372 (22388)	$^3\mathrm{H}_4 \rightarrow ^3\mathrm{P}_2$	0.9957 (0.9960)	0.4319 (0.4016)	0.0328 (0.0316)	0.0022 (0.0020)
	21220 (21229)	\rightarrow ³ P ₁	. •			
	20643 (20640)	→ ³ P ₀				
	17050 (17060)	\rightarrow 3D_2				
Nd(III)	12495 (12493)	$^4I_{9/2} \rightarrow ^4F_{5/2}$	0.9932 (0.9934)	0.6846 (0.6644)	0.0412 (0.0406)	0.0034 (0.0033)
	13470 (13486)	→ ⁴ F _{7/2}				
	14486 (14489)	→ F9/2				
	17148 (17143)	→ 4Gs/2	, ² G _{7/2}			
	18920 (18925)	→ 4G7/2				
	21675 (21679)	→ 4G11/	2			
	22644 (22648)	\rightarrow $^{2}P_{1/2}$				
Sm(III)	17772 (17766)	⁶ H _{5/2} → ⁴ G _{5/2}	0.9926 (0.9925)	0.7455 (0.7557)	0.0430 (0.0433)	0.0037 (0.0038)
	18755 (18758)	→ ⁴ F _{3/2}				
	21343 (21339)	→ ⁴ I _{9/2}				
	23822 (23820)	→ ⁶ Ps/2				
	24370 (24366)	→ ⁶ P _{3/2}				

TABLE 3 (Contd.)

Ion ————	λ _{max} (cm ⁻¹)	J-levels	β	δ%	b¹/²	η
Gd(III)	31434 (31438)	Infra ligand transition		-	_	_
Tb(III)	4490 (4486)	$^{7}F_{6} \rightarrow ^{7}F_{3}$	0.9865 (0.9863)	1.3685 (1.3890)	0.0581 (0.0585)	0.0068 (0.0069)
	4978 (4983)	→ ⁷ F ₂				
	5361 (5356)	\rightarrow ⁷ E ₁				
	26041 (26037)	→ ⁵ D ₃				
Dy(III)	10160 (10155)	$^{6}\mathrm{H}_{15/2} \Rightarrow ^{6}\mathrm{H}_{5}/_{2}$	0.9854 (0.9850)	1.4816 (1.5228)	0.0604 (0.0612)	0.0074 (0.0076
	12964 (12963)	\rightarrow $^{6}F_{3/2}$				
HO(III)	20745 (20734)	→ ⁴ F _{9[2}				
	23082 (23069)	→ ⁴ G _{11/2}				
	15093 (15084)	⁵ I ₈ → ⁵ F ₅	0.9845 (0.9844)	1.5744 (1.5847)	0.0622 (0.0625)	0.0078 (0.0079)
	18134 (18130)	→ 5F4				
	21060 (21067)	→ ³ K ₃				
	23658 (23660)	→ ⁵ G ₃				
Er(III)	15102 (15107)	$^{4}I_{15/2} \rightarrow {}^{4}F_{9/2}$	0.9837 (0.9839)	1.6570 (1.6363)	0.0638 (0.0634)	0.0082
	18800 (18806)	\rightarrow $^4S_{3/2}$				
	20267 (20263)	→ ⁴ F _{7/2}				
	25984 (25988)	→ 4G11/2				
	27378 (27386)	→ 4G1/2				

The values given in parentheses are those of the H₂BP'-Chelates.

through the C=N and —OH groups. $\nu C-O$ shift of phenolic —OH (1110–1150 cm⁻¹) as obtained towards the higher region ca 30 cm⁻¹) suggest bonding between the metal and the phenolic oxygen atom. However, the spectra of the chelates displayed two new bands in the range 1570–1595 and 1370–1385 cm⁻¹ assigned to ν_{asym} COO⁻ and ν_{sym} COO⁻ cm⁻¹ respectively. In addition, the appearance of two new bands in the ranges 490–510 cm⁻¹ and 410–430 cm⁻¹ were observed, which were assigned to $\nu_{(M-O)}$ and $\nu_{(M-N)}$ modes^{13,14} respectively.

¹H NMR Spectra

To substantiate further the bonding in these chelates ¹H NMR spectra of ligands and their Ln(III)-chelates were recorded in CDCl₃/TMS. The chemical shift values (δ, ppm) of different protons are given below. In the ¹H NMR spectra of the H₂BB and H₂BP' signals due to —COOH and —OH protons appeared at δ 11.75 and δ 11.50 and δ 8.06 and δ 8.20 ppm respectively. The signals due to —COOH protons disappeared in the spectra of the corresponding metal-chelates. The signals due to —OH proton (of H₂BB and H₂BP') appearing at δ 8.06 & 8.20 ppm were shifted towards higher field in the Ln(III)-chelates (ca .10 — .15 ppm). The multiplets, due to aromatic protons and —CH₂—CH₂ appearing at δ 6.90 — 7.16 ppm, δ 3.10 — 3.26 ppm in H₂BB and H₂BP' respectively, were found unchanged in the metal-chelates.

The results obtained conclusively indicate hexa-coordinated octahedral geometry (Fig. 1) for the Ln(III)-chelates under study.

 $= C_6H_4 - (IN H_2BB)$

Y = - CH2 - CH2 - (IN H2BP

Fig. 1. Structure of Lanthanon (III) Chelates

ACKNOWLEDGEMENTS

S. S. and L. J., are thankful to CSIR and UGC, New Delhi for the award of Research Associateship and Project Assistantship respectively.

REFERENCES

- 1. F. A. Cotton, Prog. Inorg. Chem., 7, 88 (1966).
- 2. D. J. Hodgson, Progr. Inorg. Chem., 19, 1 (1975).
- 3. A. Syamal, Coord. Chem. Rev., 16, 309 (1975).
- V. Chowdhary, M. Parihar and R. K. Mehta, Z. Phys. Chemis. (Leipzig), 271, 413 (1990).
- M. Parihar, R. Goyal, V. Gupta, B. R. Patel and R. K. Mehta, J. Indian Inst. Sci., 71, 35 (1991).
- 6. H. Irving and H. S. Rossotti, J. Chem. Soc., 2904 (1945).
- 7. G. Douheret, Bull. Chem. Soc. Fr., 1412 (1946).
- 8. H. Irving and H. S. Rossotti, J. Chem. Soc., 3397 (1953).
- 9. W. R. Stagg and J. E. Powell, Inorg. Chem., 6, 242 (1964).
- 10. E. Huckel, Z. Phys., 26, 157 (1958).
- 11. H. S. Harned and N. D. Embree, J. Am. Chem. Soc., 56, 1050 (1934).
- 12. C. K. Jorgensen, Progr. Inorg. Chem., 4, 73 (1962).
- M. M. Mostapa, A. M. Shallaby and A. A. El Asmy, J. Inorg. Nucl. Chem., 43, 2992 (1981).
- 14. B. Dash and S. K. Mahapatra, J. Inorg. Nucl. Chem., 37, 271 (1975).

[Received: 8 July 1991; Accepted: 1 March 1992]

AJC-407