A Convenient Synthesis of 1,2,4-Trihalophenothiazine-3-ones and Their Conversion into (1,4)-Benzothiazino-(2,3-b)-Phenothiazines

K. G. OJHA*, PURNIMA ADWANI AND NEHA MATHUR Department of Chemistry, S. D. Govt. College Beawar-305 901, India

A simple synthesis is reported for (1, 4)-benzothiazino (2, 3-b)-phenothiazines. 2-amino-3-(methoxy/nitro)-5-(nitro/methyl) benzenethiols were condensed with chloranil/bromanil and the resulting phenothiazine-3-ones were further condensed with same or different -amino-benzenethiols to get substituted (1,4)-benzothiazino-(2,3-b)-phenothiazines. Symmetric (1,4)-benzothiazino-(2,3-b)-phenothiazines were also prepared by single step reaction involving condensation of substituted 2-aminobenzenethiols with chloranil/bromanil in 2:1 molar ratio. Their spectral studies are also included.

INTRODUCTION

In continuation to our work on 1,4-benzothiazines^{1,2} and phenothiazines³, we are reporting the synthesis of some new 1,4-benzothiazino-(2,3-b)-phenothiazines. 1,4-Benzothiazino-(2,3-b)-phenothiazines are excellent chromogenic molecules and have been used as dye stuffs for cotton and other material such as paper, rubber, plastics and lacquers in different shades⁴⁻⁷.

Substituted 2-aminobenzenethiols (1,2-amino-3-methoxy-5-nitrobenzenethiol/2-amino-5-methyl-3-nitrobenzenethiol) were condensed with chloranil/bromanil(II) in ethanol in presence of anhydrous sodium acetate to get phenothiazine-3-ones(III). Compounds(III) were further condensed with same or different 2-aminobenzenethiols(IV) in order to obtain substituted (1,4)-benzothiazino-(2,3-b)-phenothiazines(V) (Scheme 1).

Scheme 1

Symmetric compounds(V) were also prepared by an alternative single step reaction. (Scheme 2)

$$\begin{array}{ccc} I & + & II & \xrightarrow{AcONa} & V \\ (0.02 \text{ mole}) & & & EtOH & \end{array}$$

o-Aminothiophenols (I, 0.02 mole) were condensed with halogeno-pbenzoquinones (II, 0.01 mole). The products obtained were identified by mixed melting point, TLC, spectral data and elemental analysis.

EXPERIMENTAL

All the melting points are uncorrected, IR spectra were recorded on Perkin Elmer-781 on KBr pellets. The purity of compounds was checked by TLC on silica gel in various non-aqueous solvent systems. 2-Aminobenzenethiols were prepared by the method reported elsewhere⁸. Bromanil was prepared by the method of Torry and Hunter⁹.

(i) Preparation of 1, 2, 4-Trihalophenothiazine-3-ones (III)

To a stirred suspension of chloranil/bromanil (II, 0.01 mole) in ethanol (25 ml) was added substituted 2-aminobenzenethiol (I, 0.01 mole) in ethanol (10 ml) and anhydrous sodium acetate (0.05 mole). The reaction mixture was refluxed for 6 hrs. After cooling at room temperature the solid separated was filtered, washed with water and finally with 30% ethanol. Compounds were crystallised from benzene solution (Table 1)

TABLE 1
PHYSICAL DATA OF 1, 2, 4-TRIHALOPHENOTHIAZINE-3-ONE (III)

Com	pound II	I	M.Pt.	Yield	Molecular	N%	N%	
R	R ₁	X	℃	%	Formula	(Found)	(Calcd.)	
н	H	Ci	104	62	C ₁₂ H ₄ NSOCl ₃	4.39	4.42	
Н	H	Br	137	53	C ₁₂ H ₄ NSOBr ₃	3.10	3.11	
NO ₂	CH ₃	Cl	110	57	C13H5N2SO3Cl3	7.41	7.45	
NO ₂	CH,	Br	167	45	C13H5N2SO3Br3	5.49	5.50	
OCH,	NO ₂	Cl	167	48	C13H5N2SO4Cl3	7.16	7.15	
OCH ₃	NO ₂	Br	165	50	C13H5N2SO4Br3	5.31	5.33	

(ii) Prepration of (1, 4)-benzothiazino (2, 3-b)-phenothiazines

To a mixture of III (0.01 mole) and substituted 2-aminobenzenethiol IV (0.01 mole) in ethanol (20 ml) was added anhydrous sodium acetate. The mixture was refluxed for 6 hrs and the product was worked up as described above (Table 2).

TABLE 2

PHYSICAL DATA OF (1, 4) BENZOTHIAZINO(2, 3-b)-PHENOTHIAZINES (V)

Compound V					M. pt.	Yield	Molecular	N%	N%
R	Rı	R ₂	R₃	X	°C	<u>%</u>	Formula	(Found)	Calcd.
Н	Н	NO ₂	СН	Cl	187	43	C19H9N3S2O2Cl2	9.39	9.41
Н	H	NO ₂	CH,	Br	192	51	$C_{19}H_{9}N_{3}S_{2}O_{2}Br_{2}$	7.82	7.85
H	Н	осн	, NO2	Cl	194	57	C19H9N3S2O3Cl2	9.06	7.09
H	H	OCH	3 NO2	Br	203	63	C19H9N3S2O3Br2	7.60	7.62
NO:	CH ₃	NO ₂	CH ₃	Cl	180	49	C20H10N4S2O4Cl2	11.06	11.08
NO:	CH ₃	NO ₂	СН3	Br	210	53	C20H10N4S2O4Br2	9.39	9.42
OCI	I3 NO2	OCH	NO ₂	Cl	227	47	C20H10N4S2O6Cl2	10.41	10.42
OCI	ON EF	осн	3 NO2	Br	183	69	C20H10N4S2O6Br2	8.91	8.94

IR Spectra

The IR spectra of phenothiazone III exihibit a strong band in the region 1600-1620 cm⁻¹ due to C=O stretching vibration and band at 1560-1590 cm⁻¹ are due to C=N vibration. The IR spectra of all these 1, 4-benzothiazino-(2, 3-b)-phenothiazines also show a number of sharp and medium bands in the region 1600-1200 cm⁻¹ which can be assigned to C-C, C-N ring vibrations.

ACKNOWLEDGEMENTS

The authors are thankful to the Head of the Chemistry Department for providing facilities. One of them (P.A.) is grateful to University of Ajmer for financial assistance.

REFERENCES

- R. R. Gupta, K. G. Ojha, G. S. Kalawania and M. Kumar, *Heterocycles*, 14, 1145 (1980).
- 2. K. G. Ojha, Neha Mathur and Purnima Adwani, Asian J. Chem., 4, 924 (1992).

Vol. 5, No. 1 (1993)

- 3. R. R. Gupta, K. G. Ojha and M. Kumar J. Heterocyclic Chem., 17, 1325 (1980).
- 4. Ciba Ltd. U.S. Pat. 2763641 (1956).
- 5. Imperial Chemical Industries Ltd., Brit. Pat. 698200 (1953), 22675 (1954).
- K. Venkataraman, The Chemistry of Synthetic Dyes, Vol. II, Academic Press, Inc., New York (1952).
- H. A. Lubs, The Chemistry of Synthetic Dyes and Pigments, Reinhold Publ. Co., New York (1955).
- 8. K. G. Ojha, S. K. Jain and R. R. Gupta, Synthetic Communications, 9, 457 (1979).
- 9. H. A. Torrey and W. H. Hunter, J. Am. Chem. Soc., 34, 702 (1912).

[Received: 8 May 1991; Accepted: 1 February 1992]

AJC-394

CORRIGENDUM

Paper entitled, "Studies on Complex Arylhydrazones, Part VI" [Asian J. Chem., Vol. 4, No. 3, 652-654 (1992)].

In structure I, please substitute:

X = H	referred as HL ₁
$X = p - NO_3$	referred as HL2
X = o-Me	referred as HL ₃
X = p-Me	referred as HL ₄
X = p-Br	referred as HL5