NOTES

Synthesis of Some New 3-Phenyl-6-methyl-4-substituted styryl coumarins as Antibacterial Agents

H.R. CHAMPANERI, S.R. MODI* and H.B. NAIK

Department of Chemistry

South Gujarat University, Surat-395 007, India

The compounds 3-phenyl-6-methyl-4-substituted styryl coumarins have been synthesized and characterized by elemental analyses and IR spectral studies. Their antibacterial activities against *S. aureus* and *E. coli* have also been studied.

Coumarins have varied useful properties^{1, 2}. The present study is concerned with the reaction of 2'-hydroxy-5'-methylchalcone(I) with phenylacetic acid in pyridine in presence of phosophorous oxychloride yielded 2'-phenylacetyloxy-5'-methylchalcone(II), which on treatment with pulverised potassium hydroxide in pyridine yielded 3-phenyl-6-methyl-4-substituted styryl coumarins(III) (Scheme 1).

All melting points were taken in open capillary tubes and all uncorrected IR spectra in KBr were recorded on a Perkin-Elmer 377 spectrophotometer and PMR spectra were taken on Varian model EM-360L spectrophotometer. Satisfactory elemental analyses were obtained.

H₃C

$$C_6H_5CH_2COCH$$
 $C_6H_5CH_2COCH$
 C_6H_5
 C_6H_5

Scheme I

Preparation of 2'-phenylacetyloxy-5'-methylchalcones(II)

2'-Hydroxy-5'-methylchalcone (I) (0.01 mole) and phenylacetic acid (0.01 mol) were dissolved in pyridine (20 mL) and phosphorous oxychloride (2.5 mL)

AJC-801

was added dropwise to the mixture with continuous stirring. The mixture was kept for 1 h and then diluted with cold dilute hydrochloric acid. The solid separated was filtered, washed with water and dilute solution of sodium bicarbonate, dried and crystallised from acetone.

Preparation of 3-phenyl-6-methyl-4-substituted styryl coumarins (III)

Compound (II) (0.01 mol) was added to pulverised potassium hydroxide (1.5 g) in pyridine (15 mL) and the mixture was kept for 2 h. It was then decomposed with dilute cold hydrochloric acid. The separated solid was filtered, washed with water and sodium bicarbonate solution, dried and crystallised from acetone. $v_{max}(KBr)$: 1560–1540 (—C=C—), 1710–1690 (Lactone C=O) and 1460–1450 cm⁻¹ (C—CH₃); δ (CDCl₃): 2.33–2.36 (CH₃), 6.71–6.72 (—CH=), 7.0–7.1 (=CH—), 6.7–6.9 (ArH of coumarin), 7.6–7.95 (Ar—H).

Compounds (III)		m.p. (°C)	Compounds (III)		m.p. (°C)
1.	$R = C_6H_5$	171	9.	$R = 4\text{-}OCH_3C_6H_4$	169
2.	$R = 4-CH_3C_6H_4$	92	10.	$R = 3,4-(OCH_3)_2C_6H_3$	103
3.	$R = 4 - C_2 H_5 C_6 H_4$	98	11.	$R = 3,4,5-(OCH_3)_3C_6H_2$	95
4.	$R = 4 - C_3 H_7 C_6 H_4$	105	12.	$R = 4-OH-3-OCH_3C_6H_3$	90-91
5.	$R = 2\text{-}C1C_6H_4$	92-93	13.	$R = 3-NO_2C_6H_4$	120
6.	$R = 4\text{-}C1C_6H_4$	108	14.	$R = 4-N(CH_3)_2C_6H_4$	120
7.	$R = 2,4-(Cl)_2C_6H_3$	130	15.	$R = 4 - FC_6H_4$	105
8.	$R = 2\text{-}OCH_3C_6H_4$	115-117			

Antibacterial screening

All coumarin derivatives were tested for antibacterial activity against *S. aureus* and *E. coli* using cup-plate method³. From the experimental data, it was observed that all the products are active against gram-positive bacteria like *S. aureus* and gram-negative bacteria like *E. coli*.

ACKNOWLEDGEMENT

The authors are thankful to Valsad Clinical Laboratories, Valsad for screening of antibacterial activity.

REFERENCES

- 1. B.R. Modi, N.R. Desai, B.D. Mistry and K.R. Desai, Bull. Pure Appl. Sci., 12C (1993).
- 2. T.O. Soine, J. Pharm. Sci., 53, 231 (1964).
- F. Cavanagh (Ed.), Analytical Microbiology, Academic Press, New York, p. 126 (1963).

(Received: 1 March 1994; Accepted: 28 March 1994)