#### NOTES

# Studies on Pyrimidines, Part III: Synthesis and Antibacterial Activity of 6-(2'-Hydroxy-5'-methylphen-1'-yl)-3-acetyl-4substitutedphenyl-3,4-dihydropyrimidine-2-thiols

H.R. CHAMPANERI, S.R. MODI\* and H.B. NAIK Department of Chemistry South Gujarat University, Surat-395 007, India

3-Acetylpyrimidine-2-thiol derivatives have been prepared by reacting pyrimidine-2-thiones with acetyl chloride. All the compounds have been screened for their antibacterial activity.

In continuation of work on pyrimidine<sup>1</sup>, we report in the present paper the reaction of 4-(2'-hydroxy-5'-methylphen-1'-yl)-6-substituted phenyl-1-1,2,5,6tetrahydropyrimidine-2 thiones<sup>2</sup>(I) with acetylchloride yielded 6-(2'-hydroxy-5'methylphen-1'-yl)-3-acetyl-4-substituted phenyl-3,4-dihydropyrimidine-2-thiols(II) (Scheme 1).

All melting points are uncorrected. IR spectra were taken on a Perkin-Elmer-377 spectrophotometer and FTNMR spectra were recorded on a Bruker-3000 spectrophotometer.

# Preparation of 6-(2'-hydroxy-5'-methylphen-1'-yl)-3-acetyl-4-substituted phenyl-3,4-dihydropyrimidine-2-thiols(II)

4-(2'-Hydroxy-5'-methylphen-1'-yl)-6-substituted phenyl-1,2,5,6-tetrahydropyrimidine-2-thiones<sup>2</sup> (0.0025 mol) and acetyl chloride (8.0 mL) were heated under reflux on water-bath at 35° to 45°C for 2 h. Excess of acetyl chloride was evaporated and the oil obtained was titrated with light petroleum ether, crystallised from benzene.  $v_{max}$  (KBr) 3500-3400 (OH), 1750-1700 (N-C=O) and 1600-1590 cm<sup>-1</sup> (C=N);  $\delta$ (DMSO-d<sub>6</sub>) 2.38–2.40 (CH<sub>3</sub>), 3.12–3.16 (COCH<sub>3</sub>), 6.68– 6.70 (OH), 7.0-7.05 (SH) and 7.32-8.30 (ArH).

$$H_3C$$
 $CH_3$ 
 $CH_3$ 

Scheme I

| Compounds (II) |                           | m.p. (°C) | Compounds(II) |                             | m.p. (°C) |
|----------------|---------------------------|-----------|---------------|-----------------------------|-----------|
| 1.             | $R = C_6H_5$              | 95        | 9.            | $R = 2\text{-}OCH_3C_6H_4$  | 105       |
| 2.             | $R = 4-CH_3C_6H_4$        | 110       | 10.           | $R = 4 - OCH_3C_6H_4$       | 65        |
| 3.             | $R = 4 - C_2 H_5 C_6 H_4$ | 96        | 11.           | $R = 3,4-(OCH_3)_2C_6H_3$   | 134       |
| 4.             | $R = 4 - C_3 H_7 C_6 H_4$ | 90        | 12.           | $R = 3,4,5-(OCH_3)_3C_6H_2$ | 129       |
| 5.             | $R = 2\text{-}C1C_6H_4$   | 120       | 13.           | $R = 4-OH-3-OCH_3C_6H_3$    | 40        |
| 6.             | $R = 4-CIC_6H_3$          | 85-87     | 14.           | $R = 3-NO_2C_6H_4$          | 158       |
| 7.             | $R = 2,4-(Cl)_2C_6H_3$    | 112       | 15.           | $R = 4-NO_2C_6H_4$          | 180       |
| 8.             | $R = 2,6-(Cl)_2C_6H_3$    | 136       | 16.           | $R = 4 - FC_6H_4$           | 90        |

## **Antibacterial activity**

The compounds (II) were screened for antibacterial activity using cup-plate method at a concentration of 500 mcg/d using gram positive bacteria *i.e. S. aureus* and gram-negative bacteria *i.e. E. coli*. It was observed that most of the compounds were less active against both the bacteria.

### **ACKNOWLEDGEMENT**

Authors are thankful to Stevens Institute of Technology, Hoboken, U.S.A. for recording H<sup>1</sup>-FTNMR spectra.

#### REFERENCES

- S.R. Modi, H.D. Jahangirpuria, M.R. Patel and H.B. Naik, Asian J. Chem., 6, 945, 1061 (1994).
- 2. H.R. Champaneri, S.R. Modi and H.B. Naik, Asian J. Chem., 6, 735, 737 (1994).

(Received: 1 March 1994; Accepted: 28 March 1994)

AJC-798