Synthesis and Antibacterial Activity of Some 2-Amino-4-[2'- (2", 6"-dinitro-4"-trifluoromethylphenoxy)-5'-methylphen-1'-yl]-6-substituted Phenyl Pyrimidines

S.R. MODI, H.D. JAHANGIRPURIA, M.R. PATEL and H.B. NAIK*

Department of Chemistry

South Gujarat University, Surat 395 007, India

2-Amino-4-[2'-(2",6"-dinitro-4-trifluoromethyl-phenoxy)-5'-methylphen-1'-yl]-6-substituted phenyl pyrimidines have been synthesised by the condensation of 1-[2'-(2",6"-dinitro-4"-trifluoromethylphenoxy)-5-'-methylphen-1'-yl]-3-substituted phenyl -2- propen-1-one with guanidine nitrate. These compounds were screened for antibacterial activity against *S. aureus* and *E. coli*.

INTRODUCTION

2-Aminopyrimidines are known for their physiological importance.¹⁻⁴ Ahluwalia and coworkers⁵ have synthesised some new 2-aminopyrimidines which were evaluated as antibacterial agents. The present communication deals with the reaction of 1-(2'-hydroxy-5'-methylphen-1'-yl)-3-phenyl-2-propen-1-one⁶ with 4-chloro-3,5-dinitrobenzotrifluoride⁷ in presence of aqueous potassium hydroxide which gave 1a. Condensation of 1a with guanidine nitrate furnished a number of new 2-amino-pyrimidines 2a (Scheme 1).

Antibacterial activity

Compounds 2a-o were screened for antibacterial activity using cup-plate agar diffusion method. The testing was carried out at concentration of 50 μ g using gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli. The results of antibacterial activity are given in Table 3.

EXPERIMENTAL

Melting points are uncorrected. The IR spectra (KBr) were taken on the Perkin-Elmer-377 model spectrophotometer and elemental analyses were carried out by Carlo Erba 1108 analyser.

1-[2'-(2",6"-dinitro-4"-trifluoromethylphenoxy)-5'-methylphen-1'-yl]-3-phenyl-2-propen -1-one (General Procedure) 1a

A mixture of 1-(2'-hydroxy-5'-methylphen-1'-yl)-3-phenyl-2-propen-1-one (4.72 g, 0.01 mol), aqueous potassium hydroxide (20%, 5 ml), 4-chloro-3,5-dinitrobenzotrifluoride (2.70 g, 0.01 mol) and absolute alcohol (25 mL) was

refluxed for 2 h. The content was then poured into crushed ice, and took about 8 h, when the product separated. It was filtered and crystallised from ethanol.

Yield; 56%, m.p. 92°C; found: C, 58.32; H, 3.12; N, 6.04; F, 12.16%. $C_{23}H_{15}O_6N_2F_3$ requires: C, 58.47; H, 3.17; N, 5.93; F, 12.07%; $v_{max}(KBr)$ 535 (C-CF₃), 1535, 1355 (NO₂), 1255, 1020 (C-O-C), 1635 (C=O) and 1590 cm^{-1} (C==C).

The other compounds were prepared by the aformentioned method (Table 1).

TABLE 1 PHYSICAL DATA OF 1-[2'-(2",6"-DINITRO-4"-TRIFLUOROMETHYL PHENOXY)-5'-METHYLPHEN-1'-YL]-3-SUBSTITUTED PHENYL-2-PROPEN-1-ONE (1a-o)*

Compd. No.	R	m. p. (°C)	Colour†	Yield (%)	Mol. formula
l a	Н	92	Y	56	C23H15O6N2F3
1 b	Cl(2)	73	LY	54	C23H14O6F3ClN2
1 c	Cl(4)	169	LY	50	C ₂₃ H ₁₄ O ₆ F ₃ ClN ₂
1 d	Cl(2), Cl(4)	78	Y	49	C ₂₃ H ₁₃ O ₆ F ₃ Cl ₂ N ₂
1 e	Cl(2), Cl(6)	144	Y	47	C ₂₃ H ₁₃ O ₆ F ₃ Cl ₂ N ₂
1 f	NO ₂ (2)	158	BY	42	C ₂₃ H ₁₄ O ₈ F ₃ N ₃
1 g	NO ₂ (3)	120	BY	47	C ₂₃ H ₁₄ O ₈ F ₃ N ₃
1 h	NO ₂ (4)	154	BY	48	C ₂₃ H ₁₄ O ₈ F ₃ N ₃
1 i	CH ₃ (4)	131	Y	46	C ₂₄ H ₁₇ O ₆ F ₃ N ₂
1 j	C ₂ H ₅ (4)	137	DY	44	C ₂₅ H ₁₉ O ₆ F ₃ N ₂
1 k	C ₃ H ₇ (4)	146	DY	44	$C_{26}H_{21}O_6F_3N_2$
11	OCH ₃ (2)	89	Y	47	C ₂₄ H ₁₇ O ₇ F ₃ N ₂
1 m	OCH ₃ (3), OCH ₃ (4)	94	$\mathbf{Y}^{'}$	45	C ₂₅ H ₁₉ O ₈ F ₃ N ₂
1 n	N(CH ₃) ₂ (4)	87	OR	48	C ₂₅ H ₂₀ O ₆ F ₃ N ₃
1 o	OCH ₃ (3), OH(4)	119	OR	45	C ₂₄ H ₁₇ O ₈ F ₃ N ₂

^{*}All compounds gave satisfactory elemental analysis.

2-Amino-4-[2'-(2",6"-dinitro-4"-trifluoromethylphenoxy)-5'-methylphen-1'yl]-6-phenyl pyrimidines (General Procedure) 2a

A mixture of 1-[2'-(2",6"-dinitro-4"-trifluoromethyl phenoxy)-5'-methylphen-1'-yl]-3-phenyl-2-propen-1-one (5.11 g, 0.01 mol), guanidine nitrate (1.12 g, 0.01 mol) and absolute alcohol (50 ml) was refluxed on water bath. Then aqueous solution of potassium hydroxide (40%, 5 ml) was added to it portion wise for 3 h. The reflux was continued further for 6 h. The contents were cooled, when the product separated. It was filtered and crystallised from DMF.

Yield 71%; m.p. 166°C; Found: C, 56.31; H, 3.08; N, 13.78; F, 11.27%. $C_{24}H_{16}O_5N_5F_3$ requires: C, 56.36; H, 3.13; N, 13.69; F, 11.15%. v_{max} (KBr) 490 (C-CF₃), 1540, 1360 (NO₂), 1250, 1030 (C-O-C), 1590 (C-N) and 3430 cm⁻¹ (NH).

[†]Y = Yellow, LY = light yellow, DY = dark yellow, BY = brown yellow, OR = orange red

948 Modi et al. Asian J. Chem.

The other 2-aminopyrimidines were prepared by the aformentioned method. (Table 2).

TABLE 2
PHYSICAL DATA OF 2-AMINO-4-[2'-(2",6"-DINITRO-4"-TRIFLUOROMETHYL PHENOXY)- 5'-METHYLPHEN-1'-YL]-6-SUBSTITUTED PHENYL PYRIMIDINES (2a-o)*

Compd. No.	R	m.p. (°C)	Colour†	Yield (%)	Mol. Formula
2 a	Н	166	Y	71	C24H16O5F3N5
2 b	Cl(2)	178	PY	74	C24H15O5F3CIN5
2 c	Cl(4)	235	Y	73	C ₂₄ H ₁₅ O ₅ F ₃ ClN ₅
2 d	Cl(2), Cl(4)	187	Y	73	C ₂₄ H ₁₄ O ₅ F ₃ Cl ₂ N ₅
2 e	Cl(2), Cl(6)	205	BY	78	C ₂₄ H ₁₄ O ₅ F ₃ Cl ₂ N ₅
2 f	NO ₂ (2)	216	Y	76	C ₂₄ H ₁₅ O ₇ F ₃ N ₆
2 g	NO ₂ (3)	179	Y	75	C ₂₄ H ₁₅ O ₇ F ₃ N ₆
2 h	NO ₂ (4)	184	BY	76	C ₂₄ H ₁₅ O ₇ F ₃ N ₆
2 i	CH ₃ (4)	177	Y	74	C ₂₅ H ₁₈ O ₅ F ₃ N ₅
2 ј	C ₂ H ₅ (4)	240	Y	78	C ₂₆ H ₂₀ O ₅ F ₃ N ₅
2 k	C ₃ H ₇ (4)	266	Y	76	C ₂₇ H ₂₂ O ₅ F ₃ N ₅
21	OCH ₃ (2)	217	Y	7 4	$C_{25}H_{18}O_6F_3N_5$
2 m	OCH ₃ (3), OCH ₃ (4)	181	PY	75	C ₂₆ H ₂₀ O ₇ F ₃ N ₅
2 n	N(CH ₃) ₂ (4)	195	Y	79	C ₂₆ H ₂₁ O ₅ F ₃ N ₆
2 o	OCH ₃ (3), OH(4)	173	PY	80	C ₂₅ H ₁₈ O ₇ F ₃ N ₅

^{*} All compounds gave satisfactory elemental analysis.

RESULTS AND DISCUSSION

The zone of inhibition in mm for the compounds 2a-o tested for antibacterial activity. Activities of standard drugs are also given for comparison.

Evaluation of bacterial activity reveals that the compound 2b having chlorine group in 2-position of substituted phenyl ring showed activity upto 3.0 mm against both bacteria. It is nearly 60-50% as active as ampicillin and tetracyclin. It was also observed that the compound possessing group of *ortho*-position showed better activity than the compound possessing a group at *para* position.

ACKNOWLEDGEMENT

Authors are thankful to Bio-Science Department, South Gujarat University, Surat for the biological screening of compounds.

 $[\]dagger Y = \text{yellow}, PY = \text{pale yellow}, BY = \text{brown yellow}.$

TABLE 3 ANTIBACTERIAL ACTIVITY OF THE COMPOUNDS 2a-o AND STANDARD DRUGS

Compd.	Zone of inhibition in mm, after 24 h. Disc potency 50 µg				
No.	S. Aureus	E. Coli			
2 a	_	2.0			
2 b	3.0	3.0			
2 c	1.5	1.0			
2 d	2.0	2.5			
2 e	2.0	2.5			
2 f	2.5	2.5			
2 g	2.0	2.0			
2 h	2.0	2.5			
2 i	2.0	2.5			
2 j	2.0	3.0			
2 k	2.0	3.0			
21	3.0	2.5			
2 m	1.5	1.0			
2 n	1.0	1.5			
2 o	2.0	1.5			
Standard drugs: Ampicillin Tetracycline	5.0	6.0			

REFERENCES

- 1. A. Krentzberger and S.L. Roehling, Chem. Abstr., 83, 78767 (1975).
- 2. G.B. Bennet, R.B. Mason, L.J. Alden and J.B. Roach, J. Med. Chem., 21, 623 (1978).
- K.K. Weinherdt and M. Marn, Chem. Abstr., 95, 97837 (1981). 3.
- V. Karabanov, L.P. Prikarchikova, V. Boldyrev, I.A. Nasyr, I.G. Valadimirsev, V.M. 4. Cherkasov, N.I. Zhuravakaya and V.P. Borisenko, Chem. Abstr., 94, 15141 (1981).
- 5. V.K. Ahluwalia, N. Kalia and S. Bala, Indian J. Chem., 26B, 700 (1987).
- 6. P.D. Lokhande and B.J. Ghiya, J. Indian Chem. Soc., 66, 314 (1989).
- 7. Heyden Newport Chemical Co., U.S. Patent 3,000,975 (1959).
- 8. F. Kavanagh, Analytical Microbiology, Academic Press, New York, p. 125 (1963).

(Received: 24 September 1993; Accepted: 29 January 1994)

AJC-775