NOTES

Studies on Pyrimidines, Part II: Synthesis and Antibacterial Activity of 7-(2'-hydroxy-5'-methylphen-1'yl)-2-acetyl-5-substituted phenyl-3-oxo-2,3,4,5-tetrahydrothiazolo (3,2-a)-pyrimidines

H.R. CHAMPANERI, S.R. MODI* and H.B. NAIK

Department of Chemistry
South Gujarat University, Surat-395 007, India

The title compounds have been prepared by heating pyrimidine-2-thiones with chloroacetic acid in acetic acid/acetic anhydride in the presence of sodium acetate. These compounds were screened for antibacterial activity.

Thiazole compounds possess considerable fungicidal action ^{1,2}. The present work was carried out with the treatment of 4-(2'-hydroxy-5'-methylphen-1'-yl)-6-substituted-phenyl-1,2,5,6-tetrahydropyrimidine-2-thiones ³(I) with chloroacetic acid in acetic acid/acetic anhydride in the presence of sodium acetate yielding 7-(2'-hydroxy-5'-methylphen-1'-yl)-2-acetyl-5-substituted phenyl-3-oxo-2,3,4, 5-tetrahydrothiazolo-(3,2-a)-pyrimidines(II) (Scheme 1).

All melting points are uncorrected. IR spectra were taken on a Perkin Elmer-377. spectrophotometer and PMR spectra were recorded on a Varian model EM-360L spectrophotometer. Satisfactory microanalyses were obtained.

Preparation of 7-(2'-hydroxy-5'-methylphen-1'-yl)-2-acetyl-5-substituted phenyl-3-oxo-2,3,4,5-tetrahydrothiazolo-(3,2-a)-pyrimidines(II)

4-(2'-Hydroxy-5'-methylphen-1'-yl)-6-substituted phenyl-1,2,5,6-tetrahydropyrimidine-2-thiones 3 (0.005 mole), 0.5 g chloroacetic acid and 2.0 g fused sodium acetate in 5.0 ml of acetic acid and 2.0 ml acetic anhydride were refluxed on water-bath at 70–75°C for 3 h and left overnight at room temperature. The reaction mixture was poured into distilled water and the solid obtained was filtered, dried and crystallised from light petroleum ether. $\gamma_{max}(KBr)$: 3450–3400 (OH), 1660–1650 (N–C=O) and 1600–1595 cm $^{-1}$ (C=N); δ (CDCl₃): 2.24–2.26 (CH₃), 3.68–3.72 (COCH₃), 6.78–6.82 (OH) and 7.08–7.50 (Ar–H).

$$\begin{array}{c} OH \\ \\ N \\ S \end{array} \begin{array}{c} CICH_2COOH \\ \hline \\ CH_3COOH/(CH_3CO)_2O \\ \hline \\ NH \\ \hline \\ R \end{array} \begin{array}{c} OH \\ \hline \\ NH \\ \hline \\ R \end{array} \begin{array}{c} OH \\ \hline \\ COCH_3 \\ \hline \\ COCH_3 \\ \hline \\ (II) \end{array}$$

Compounds (II),

		M.pt. (°C)			M.pt. (°C)
1.	R=C ₆ H ₅ ;	82	9.	R=2-OCH ₃ C ₆ H ₄ ;	65-67
2.	R=4-CH ₃ C ₆ H ₄ ;	86	10.	R=4-OCH ₃ C ₆ H ₄ ;	75–77
3.	R=4-C ₂ H ₅ C ₆ H ₄ ;	76	11.	R=3,4-(OCH ₃) ₂ C ₆ H ₃ ;	83-85
4.	R=4-C ₃ H ₇ C ₆ H ₄ ;	118	12.	R=3,4,5-(OCH ₃) ₃ C ₆ H ₂ ;	98
5.	R=2-ClC ₆ H ₄ ;	120	13.	R=4-OH-3-OCH ₃ C ₆ H ₃ ;	86
6.	R=4-ClC ₆ H ₄ ;	108-110	14.	R=3-NO ₂ C ₆ H ₄ ;	162
7.	R=2,4-Cl ₂ C ₆ H ₃ ;	93	15.	R=4-NO ₂ C ₆ H ₄ ;	178
8.	R=2,6-Cl ₂ C ₆ H ₃ ;	82	16.	4-FC ₆ H ₄ ;	105

Antibacterial activity

The products were screened for antibacterial activity by cup-plate method, using chloroform as solvent at a concentration of 10 mcg/d against *S. aureus* and *E.coli*. All compounds show mild activity against both the bacteria.

REFERENCES

- 1. V.K. Ahluwalia, L. Nayal, S. Bala and S. Raghav, Indian J. Chem., 27B, 72 (1988).
- 2. V.K. Ahluwalia, K.K. Arora and B. Mehta, Indian J. Chem., 27B, 183 (1988).
- 3. H.R. Champaneri, S.R. Modi and H.B. Naik, Asian J. Chem. (in press).

(Received: 1 November 1993; Accepted: 1 December 1993) AJC-737