NOTES

Spectrophotometic Determination of Nickel with Di-o-Tolyl-carbazone Using the Synergistic Effect of Phenanthroline

T. SURESH* AND V.H. KULKARNI

Department of Chemistry, Gulbarga University, Gulbarga-585 106, India

In the present note, the spectrophotometric determination of nickel(II) with di-o-tolylcarbazone and phenanthroline has been described.

Di-o-tolylcarbazone was prepared by the method described by Hubbard and Scott¹, involving presulphate oxidation of di-o-tolylcarbazide and purfied by the method suggested by Ghosh and Ray². Di-o-tolylcarbazide was synthesized by heating o-tolylhydrazine and guaiacol carbonate for 3 h at 160°C as suggested by Noller³. The melting point of the di-o-tolylcarbazone was 137°C. Diphenylcarbazone has been used as an indicator for the complexometric determination of mercury⁴ and molybdenum⁵. But no work has been reported in literature where di-o-tolylcarbazone has been used as an analytical reagent. The IR spectral studies and determination of pK value⁶ of this reagent has been reported. The present communication deals with spectrophotometric determination of nickel with this reagent.

During the course of investigation of adduct and mixed ligand chelate extraction system⁷, we have found that the addition of heterocyclic nitrogen bases such as pyridine and phenanthroline to a chloroform solution of di-o-tolylcarbazone gave rise to a reagent which was free from the disadvantages of di-o-tolylcarbazone used alone. Nickel was rapidly and quantitatively extracted over a broad pH range (from 6.0 to at least 11.0) to give a very highly coloured mixed ligand complex having an absorption band centred at 520 nm. The mixed ligand complex is sufficiently stable to permit the removal of excess of di-o-tolylcarbazone by back extraction with 0.1M sodium hydroxide, so monocolour method is applicable. The molar absorptivity of this complex is 25.1×10^3 , which makes a method based on this reaction about four times as sensitive as the currently most sensitive method, that using dimethyl glyoxime and an oxidising agent⁸.

To 10 ml of a solution containing 1 to 10 g of nickel (upto $25\mu g$ may be accommodated), add 5 ml of a phthalate or acetate buffer of pH 6.0 (or dilute ammonia may be used) followed by 15 ml of a chloroform solution $7 \times 10^{-5} M$ in di-o-tolylcarbazone and $3 \times 10^{-5} M$ in phenanthroline. Shake the phase for 5 min, allow them to settle, and separate them. Back-extract the chloroform layer with 10 ml of 0.1M sodium hydroxide by vigorous shaking for about 1 min. Read the absorbance of the chloroform extract in a 10 mm cell at 520 nm against a

similarly treated blank. Construct a calibration curve (a straight line passing through the origin and having a slope of 25.1×10^3 1 mole⁻¹ cm⁻¹). Typical results are presented in Table 1.

TABLE 1

	Ni taken μg	Absorbance at 520 nm	Ni found μg
	1.77	0.171	1.79
	5.29	0.518	5.44
•	7.41	0.711	7.23
	8.82	0.872	8.97

The extraction of the mixed ligand complex does not in itself provide significant increase in selectivity over the extraction of di-o-tolylcarbazone.

An equilibrium study of the reaction of the adduct and mixed ligand complexes formed from various heterocyclic nitrogen bases and di-o-tolylcarbazone were published⁷ elsewhere.

ACKNOWLEDGEMENT

The authors are thankful to Prof. S.P. Hiremath, Chairman, Department of Chemistry, Gulbarga University, Gulbarga for his encouragement and facilities.

REFERENCES

- 1. D.M. Hubbard and E.W. Scott, J. Am. Chem. Soc., 65, 2390 (1943).
- 2. N.N. Ghosh and J.N. Ray, J. Indian Chem. Soc., 37, 650 (1960).
- 3. C.N. Noller, J. Am. Chem. Soc., 52, 1132 (1930).
- 4. M. Dugandzic and V. Medenica, Arh. Farm., 20, 147 (1970) (creat). Chem. Abstr., 74, 60587j (1971).
- 5. G.S. Deshmukh, Bull. Chem. Soc. Japan, 29, 27 (1956).
- 6. K.S. Math, S.P. Hiremath and T.M. Aminabhavi, Indian J. Chem., 25A, 603 (1986).
- 7. K.S. Math and T. Suresh, Talanta, 32B, 811 (1985).
- 8. E.B. Sandell, Colorimetric Determination of Traces of Metals, Interscience, New York, 3rd Ed., p. 669 (1959).

(Received: 28 June 1993; Accepted: 14 Ocotober 1993) AJC-716