Physico-Chemical Studies of σ-bonded-dialkyltin(IV) Cations with N-(cyclohexyl)-2-Mercaptoacetamides

PUSHPA BHAGCHANDANI* and SHIMLA GARG Department of Chemistry, S.D. Government College Beawar-305 901, India

In the present work, the physico-chemical characteristics of some $\sigma\text{-bonded}$ dialkyltin(IV) cations with N-(cyclohexyl)-2-mercapto-acetamides were described.

INTRODUCTION

Incorporation of pH correction, in data obtained from the potentiometric titration of N-(cyclohexyl)-2-mercaptoacetamides with NaOH solution in dioxane-water (3:1, v/v) at $30 \pm 0.1^{\circ}$ C in a medium of constant ionic strength $\mu = 0.1$ M (NaCl) gave the value of thermodynamic dissociation constant pk_D as 11.33 ± 0.03 . Under similar conditions of solvent composition, temperature and ionic strength the thermodynamic stepwise formation constant of the complexes formed between dialkyltin(IV) cations {(CH₃)₂SnCl₂, (C₂H₅)₂SnCl₂, (n-C₄H₉)₂SnCl₂} and the above ligand. Using method of least squares gave log B₂ as 15.19 respectively. 14.79 and 14.49 respectively. This order is in accordance with Irving-Williams series. Derivatives of the above metals have also been synthesised and characterised.

EXPERIMENTAL

Several methods are available for the preparation of N-(cyclohexyl)-2-mercaptoacetamides $^{1-5}$. As regards efficiency of the yield Sircar method⁶ is the best and this was used for preparation of N-(cyclohexyl)-2-mercaptoacetamides. Dioxane was purified by a standard procedure³. Dioxane-water mixture (3:1, v/v) was used in preparing metal salt, ligand and NaCl solution.

Procedure

The solutions containing ligand (0.01 M) or ligand and metal ions (0.01 M and 0.0025 M) were titrated potentiometrically at μ = 0.1 M (NaCl) and 30 ± 0.1°C with 0.5 M and 0.1 M carbonate-free NaOH solutions. The changes in pH were recorded as a function of (OH⁻) and suitable pH corrections were incorporated.

Calibration of Glass Electrode

According to Van Uitert and Haas⁷, the pH meter reading (B) in an aqueous dioxane medium is related to the hydrogen ion concentration

$$-\log (H^+) = B + \log U_{H^\circ} \tag{1}$$

where the value of the correction factor, log U_H, at a fixed temperature and composition of the medium is related to the activity coefficient by the relation

$$-\log U_{\rm H} = \log U_{\rm H^{\circ}} - \log (1/v \pm) \tag{2}$$

The value of $\log U_{H^0}$ was calculated by using an expression given by Rao and Mathur⁸. For the temperature dependence in dioxane-water mixture (3:1, v/v):

$$\log U_{H^{\circ}} = (0.007 \text{HO6})t + 0.828 \tag{3}$$

where 't' is the temp. in °C.

The value of $\log (1/v\pm)$ was determined either by interpolation of the plot of $\log (1/v\pm)$ vs. mean molality $(M\pm)$ in dioxane- water mixture (3:1, v/v) at 30° from the data given by Harned and Owen⁹ for HCl or by employing the following polynomial given by Irving and Mahnot¹⁰.

$$\log (1/v\pm) 30^{\circ}C = 0.0933 + 1.0351n_2 + 0.3142n_2^2 + 6.6350n_2^3$$
 (4)

Where n_2 is the mol fraction of dioxane-recalculated with the atomic weight C = 12.01, H = 1.008.

The value of $\log (1/v\pm)$ turned out to be 0.920 and 0.9212 respectively by using the above two methods. In the present work the value 0.920 was employed for the evaluation of $\log U_H$ by using Eq. (2) $\{1.050 - 0.920 = 0.130\}$.

Calculation of Thermodynamic Dissociation Constant and Stepwise Formation Constant

The stoichiometric dissociation constant (P_{qD}) of N-(cyclohexyl)-2-mercaptoacetamides was calculated by the following expression:

$$-\log qD = -\log (H^{+}) + \log \frac{(HL)}{(NaOH) + (H^{+}) - (OH^{-})} - 1$$
 (5)

where the correct pH was obtained by adding 0.130 to the pH meter reading (B).

The thermodynamic dissociation constant Pk_D was calculated from the relationship⁹ given by Rao and Mathur.

$$Pk_D = Pq_D + 2 \log (1/v \pm)$$
 (6)

Substituting the value of av. $Pq_D(9.49 \pm 0.03)$ and $2 \log (1/v \pm)(1.84)$ the value of Pk_D turned out to be (11.33 ± 0.03).

The following equations were used to express the formation of 1:2 metal-ligand complexes in dioxane-water (3:1, v/v):

$$M^{2+} + L^{-} = ML^{+}; \quad q_1 = \frac{[ML^{+}]}{[M^{2+}][L^{-}]}$$
 (7)

$$ML^{+} + L^{-} = ML_{2};$$
 $q_{2} = \frac{[ML_{2}]}{[ML^{+}][L^{-}]}$ (8)

The values of $\log q_1$ and q_2 for the complexes of dialkytin(IV) cations with N-(cylohexyl)-2-mercoptoacetamides system were computed from the data for \overline{n} and \overline{L} , using the Irving-Rossotti¹¹ equation and the following expressions:

$$\log (L^{-}) = \log (L_{0}) - (NaOH) - (H^{+}) + (OH^{-}) - \log \frac{(H^{+})}{q_{D}}$$
(9)

$$\overline{n} = (L_0) - (L^-)\frac{(H^+)}{q_D} + 1$$
 1/(M₀) (10)

$$\frac{\overline{n}}{(n-1)(L^{-})} = \frac{(2-\overline{n})(L^{-})}{(n-1)} q_1 q_2 - q_1$$
 (11)

where (L_0) , (M_0) are total ligand and metal concentrations and \overline{n} is the formation number calculated from the pH data obtained prior to the precipitation of metal complex during the titration of the metal-ligand mixture with NaOH.

Calculation of Stepwise Formation Constants by Interpolation at Half n Values and Correction Terms Method

Interpolation at half \bar{n} values: In a system, where N = 2, the formation curve, between \bar{n} and PL remains symmetrical about the mid-point. Interpolation of \bar{n} at 0.5 and 1.5, respectively, On the PL-axis will directly give the value of q_1 and q_2 . The method, however, is not accurate because of the two reasons:

- (i) Only two points, viz., at $\overline{n} = 0.5$ and $\overline{n} = 1.5$ are taken into consideration and the rest of the points are omitted, and
 - (ii) Smoothening of the curve (n, PL) is essential.

Correction term method: The method was suggested by Irving and Rossotti¹¹ for the calculation of stoichiometric stepwise formation constants, q_1 and q_2 . According to this method,

$$\log q_1 = P^{L_{1-d}} + y$$
 12(d)

$$\log q_2 = P^{L_{1+d}} - y \tag{13}$$

where the value of y, the 'correction term', is given by the expression

y = log
$$\frac{2(1-d)}{d+\sqrt{d^2+4(1-d^2)q_2/q_1}}$$

The magnitude of y depends upon the value of d and the ratio q_2/q_1 .

If $P^{L_{1-d}}$ and $P^{L_{1+d}}$ are two scattered points on the smoothened formation curve, disposed symmetrically about the mid-point, then the following expression is applicable to the curve.

$$\Delta P^{L_d} = P^{L_1 - d} - P^{L_1 + d} = \log \frac{[q_1]}{[q_2]} + 2y$$
 (15)

By using eqs. corresponding values of y and ΔPL have been calculated for nine values of d for each of series of values of q_1/q_2 ranging from 10^5 to 10^{-2} . The relationship between y and ΔPL was shown graphically for which the necessary data were given by Irving and Rossotti¹¹.

The correction term method was applied to pairs of values (\bar{n} , PL) symmetrically disposed about the mid-point. The process was repeated for several values of d and the mean value of the calculated stepwise formation constants was taken. The formation eurves for metal chelates of N-(cyclohexyl)-2-mercaptoacetamides was shown in Figs. 1-3.

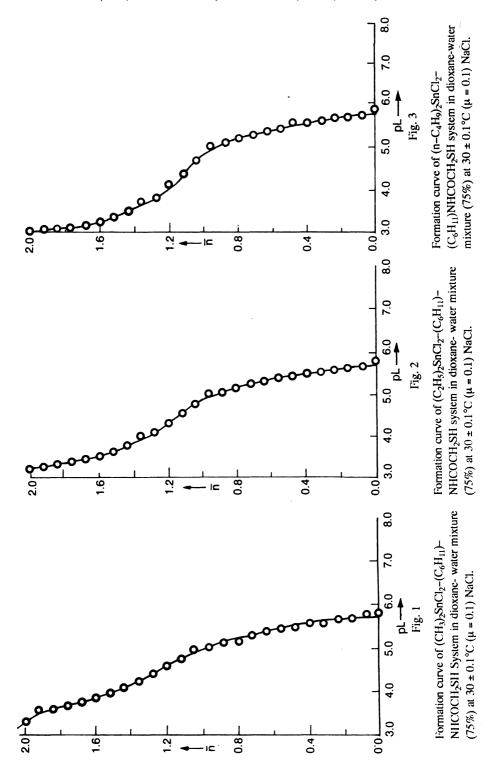
The thermodynamic stepwise formation constants were then computed from the relationship⁷

$$\log k_1 = \log q_1 + 4 \log (1/v \pm)$$

 $\log k_2 = \log q_2 + 2 \log (1/v \pm)$

The values of $\log k_1$, $\log k_2$ and $\log B_2$ have been listed in the Table below.

THERMODYNAMIC STABILITY CONSTANTS OF $(CH_3)_2SnCl_2$, $(C_2H_5)_2SnCl_2$ AND $(n-C_4H_9)_2SnCl_2$ WITH N-(CYCLOHEXYL) 2-MERCAPTOACETAMIDE SYSTEMS


Solvent:	Dioxane-Water	Mixture (75 per cent v	/v);
μ=	= 0.1 M NaCl;	Temp. $= 3$	0 ± 0.1 °C.	

	$(CH_3)_2SnCl_2$	$(C_2H_5)_2SnCl_2$	$(n-C_4H_9)_2SnCl_2$
	Interpolation a	at Half n Values	
log k ₁	9.18	9.11	9.15
log k ₂	5.83	5.51	5.21
$log \beta_2$	15.01	14.62	14.36
	Correction 7	Term Method	
log k ₁	9.16	9.18	9.17
log k ₂	5.97	5.59	5.32
$log \beta_2$	15.13	14.77	14.49
	Least-Squa	ares Method	
log k ₁	9.14	9.09	9.16
log k ₂	6.05	5.70	5.33
$log \; \beta_2$	15.19	14.79	14.49

RESULTS AND DISCUSSION

Dissociation constant of N-(cyclohexyl)-2-mercaptoacetamide ($Pq_D = 9.49 \pm 0.03$) is lower than expected. This is because of the fact that in the saturated non-planar, chair planar conformation of the ligand, the mercaptoacetamido group is at the axial position of the ring. So the C-OH group is linked to one of the sulphur lone pairs of electrons through hydrogen bonding; as a consequence of this SH proton ionises more readily than could be anticipated.

It forms much weaker complexes with σ -bonded dialkyltin dichloride, as shown by the following values of $\log q_1$ and $\log q_2$.

$(CH_3)_2SnCl_2$	$\log q_1 = 5.46,$	$\log q_2 = 4.21,$
$(C_2H_5)_2SnCl_2$	$\log q_1 = 5.41,$	$\log q_2 = 3.86,$
$(n-C_4H_9)_2$ SnCl ₂ ,	$\log q_1 = 5.48,$	$\log q_2 = 3.49.$

REFERENCES

- 1. H. Beckurts and H. Fresichs J. Pract. Chem., 66, 1092 (1974).
- 2. E. Benary and L. Brech, Ber., 46, 2105 (1913).
- A.I. Vogel, A Text Book of Practical Organic Chemistry, 3rd Edn., Longmans, London (1971).
- F.D. Ubeda and F. Capitan, Anals Real Soc. Espaff. Fis. Quim (Madrid), 45B, 413 (1979).
- 5. J.A. Van Allan, J. Am. Chem. Soc., 69, 2914 (1946).
- 6. R.N. Mishra and S.S. Guha Sircar, J. Indian Chem. Soc., 32, 127 (1955).
- 7. L.G. Van Uitert and C.G. Haas, J. Am. Chem. Soc., 75, 451 (1953).
- 8. H.B. Mathur and B. Rao, J. Inorg. Nucl. Chem., 33, 2919 (1971).
- H.S. Hamed and B.B. Owen, The Physical Chemistry of Electrolytic Solutions, 3rd edn., Reinhold, New York, pp. 717, 718 (1958).
- 10. H. Irving and U.S. Mahnot, J. Inorg. Nucl. Chem., 30, 1215 (1968).
- 11. H. Irving and H.S. Rossotti, J. Chem. Soc., 3397 (1953).

(Received: 9 November 1992; Accepted: 5 June 1993)

AJC-646

ERRATA

Non-sponifiable components of Xanthium strumarium leaves (Linn)—Vol. 6, No. 1 (1994) pp. 189–190. V.K. Saxena and Manju Mishra. Please read Manju Mishra