NOTES

Potential Antitubercular Agents, Part II: 4-Thiazolidinone Derivatives

ANJANI SOLANKEE* and KISHOR KAPADIA

Department of Chemistry

B.K.M. Science College

Valsad-396 001, India

4-Thiazolidinones have been synthesised by the condensation of thiourea with 2-bromo-adipic acid using ethanol in presence of pyridine as catalyst. The compounds have been screened for antitubercular activity using $H_{37}Rv$ strain of bacteria. Their spectral studies are also included.

In continuation of our earlier work¹ on 2-phenyl-imino-5-(ω -carboxy propyl)-4-thiazolidinones and their antitubercular activity, we are reporting the synthesis of some new 2-phenyl-imino-3-phenyl-5-(ω -carboxy propyl)-4-thiazolidinones and their antitubercular activity.

For the preparation of 2-phenyl-imino-3-phenyl-5-(ω -carboxy propyl)-4-thiazolidinones [VI], the substituted thioureas [V] have been prepared. The thioureas were then condensed with 2-bromo-adipic acid in ethanol in presence of pyridine as catalyst. When tested, these compounds showed antitubercular activity [Scheme 1].

Scheme I

Melting points were taken in open capillaries in an electric melting point apparatus and are uncorrected. Infra-red spectra of the compounds were recorded on Perkin Elmer 237 grating spectrophotometer.

Preparation of diester of adipic acid² (II), monoester of adipic acid³ (III), 2-bromo-adipic acid⁴ (IV), thiourea (V)

Symmetrical 1,3-diaryl -2-thoureas are prepared by heating substituted aryl isothiocyanates and appropriately substituted aryl amine in absolute alcohol⁵.

Preparation of 2-phenylimino-3-phenyl-5-(ω-carboxy propyl] -4-thiazolidinones (VI)⁶

2-Bromoadipic acid (0.021 mole), appropriate 1,3-disubstituted thiourea (0.02 mole), pyridine (AR grade, 0.025 mole) and 30 ml absolute ethyl alcohol were refluxed on a water bath for 4 hrs. The excess of solvent was evaporated. The residue was dissolved in sodium bicarbonate solution (50 ml) and filtered. The solution was adjusted to pH 3.0 by hydrochloric acid (AR grade). 4-Thiazoli-dinones thus obtained were either in liquid or semisolid state but they solidified on standing for 2 hrs to 2-3 days. The products were recrystallised from ethanol (Table 1).

TABLE 1 PHYSICAL DATA OF 2-PHENYL-IMINO-3-PHENYL-5-[ω -CARBOXY PROPYL] -4-THIAZOLIDINONES [VI]

S. No.	R _i	R ₂	M. pt.	Molecular Formula	Analysis %: Found (Calc)	
					N	S
1.	-C ₆ H ₅	-C ₆ H ₅	202	C ₁₉ H ₁₈ O ₃ N ₂ S	7.85	9.00
2.	-o-C ₆ H ₄ CH ₃	-о-С ₆ Н ₄ СН ₃	138	C ₂₁ H ₂₂ O ₃ N ₂ S	(7.90) 7.36 (7.32)	(9.04) 8.32 (8.38)
3.	-m-C ₆ H ₄ CH ₃	-m-C ₆ H ₄ CH ₃	112	C ₂₁ H ₂₂ O ₃ N ₂ S	7.25 (7.32)	8.29 (8.38)
4.	-p-C ₆ H ₄ CH ₃	- <i>p</i> -С ₆ H ₄ CH ₃	90	C ₂₁ H ₂₂ O ₃ N ₂ S	7.29 (7.32)	8.36 (8.38)
5.	-m-C ₆ H ₄ Cl	-m-C6H4Cl	158	C ₁₉ H ₁₆ O ₃ N ₂ SCl ₂	6.58 (6.61)	7.41 (7.53)
6.	-p-C6H4Cl	-p-C ₆ H ₄ Cl	160	C ₁₉ H ₁₆ O ₃ N ₂ SCl ₂	6.50 (6.61)	7.41 (7.53)
7.	- <i>o</i> -C ₆ H ₄ OCH ₃	-o-C ₆ H ₄ OCH ₃	117	C ₂₁ H ₂₂ O ₅ N ₂ S	6.69 (6.75)	7.69 (7.73)
8.	-m-C ₆ H ₄ OCH ₃	-т-С6Н4ОСН3	105	C ₂₁ H ₂₂ O ₅ N ₂ S	6.65 (6.75)	7.80 (7.73)
9.	-p-C ₆ H ₄ OCH ₃	-p-C ₆ H ₄ OCH ₃		C21H22O5N2S	`	`
					(6.75)	(7.73)
10.	-p-C6H4OC2H5	-p-C6H4OC2H5	116	C21H26O5N2S	6.25 (6.33)	7.19 (7.25)

Screening for antitubercular activity

Compounds 2, 3, 4, 6, 7 and 10 were screened for their antitubercular activity

against $H_{37}Rv$ strain of bacteria. Out of six compounds, compounds 2, 6 and 7 are inactive, where as compounds 3, 4 and 10 showed activity at 100 mcg/ml. Isonicotinic acidhydrazide and streptomycin were used as standard drugs.

The IR spectra of the compound 1 exhibit characteristic bands at 1590 cm⁻¹ (-C=C- stretching of aromatic ring), 1480 cm⁻¹ (thioureid band) and 1700 cm⁻¹ (-C=O of the ring).

ACKNOWLEDGEMENTS

The authors are thankful to Hoffkins Institute, Bombay for antitubercular testing. One of the authors (A.S.) is thankful to U.G.C. for the award of Junior Research Fellowship.

REFERENCES

- 1. Anjani Solankee, Kishor Kapadia and J.M. Turel, Asian J. Chem., 6 169 (1994).
- M. Micovic, Org. Syn., Collective Vol. II, John Wiley and Sons, Inc. London, p. 264 (1963).
- 3. V.M. Tursin, L.G. Chebotareva and A.S. Sandkov, Med. Prom. S.S.S.R, 16, 22 (1962).
- L. Otzet, J. Pascula and J. Vaider, An. Real Soc., Espan. Fis. Quim. Ser. B. 63, 679 (1967).
- 5. N.P. Buu-Hoi, N.D. Huong and N.H. Nam, J. Chem. Soc., 1573 (1955).
- 6. Klare, Markley and E.E. Reid, J. Am. Chem Soc., 52, 2137 (1930).

(Received: 1 November 1992; Accepted: 15 May 1993)

AJC-623